$$\begin{array}{l} (f) \quad (f)$$

$$\frac{[anna}{X} (Aortman) \qquad (5)$$

$$X = V(4) \subseteq p^{n}, f = olignee d with d \leq h$$
Then p^{n} is converted by lines l with either $l(1:X) = point$

$$\frac{eV(4)}{eV(4)} = p^{n}, \lambda \in p^{n+1} \qquad or \quad l \leq X.$$

$$l = \int t_{\lambda} |t \in h^{1}|^{2}$$
Thue $f(t_{\lambda}) = t_{\lambda} f_{\lambda}(a) + \cdots + f_{\lambda}(a), f_{\lambda}(a) = 0 \text{ since } x \in V(4).$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a), f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + \cdots + f_{\lambda}(a) = 0 \text{ since } x \in V(4).$$

$$S = ln X = \{x\} \iff f_{\lambda}(a) + 0 \qquad (a) = 1 \text{ since } a = 0 \text{ since } x \in V(4).$$

$$S = ln X =$$

For simplicity, conside the case
$$c=2$$
, $n=2dtS$, $s=0$
 $f = f_1(X_{n-1}, X_n) + f_n(Y_1, \dots, Y_{n+S})$, p^{2dtS}
Generic $(X_{n}, Y_n) \neq (p^{2dtS}, may assure p^{T} \otimes p^{2dtS})$
 $X_n, Y_n \neq 0$.
 $S(X_n, 0) \in \mathbb{P}^d$ By line, $\exists X_n \in \mathbb{P}^d \leq f_n(S_{n+t}X_n) - s^d$
 $S(X_n, 0) \in \mathbb{P}^d$ By line, $\exists X_n \in \mathbb{P}^d \leq f_n(S_{n+t}X_n) - s^d$
 $f_n(r_{N+t}X_n)$
 $f_n(r_{N+t}X_n)$
 $f_n(r_{N+t}X_n)$
 $f_n(r_{N+t}X_n)$
 $f_n(r_{N+t}X_n) + V(a_{N-t}Y_n)) = v_{N-t}$
 $R_{Y} line, \exists Z_n \in \mathbb{P}^{dt} \leq f(u(X_n, Y_n) + V(a_{N-t}Y_n)) = v_{N-t}$
 $f_n(u_{T}a_{Y_n}Y_n) + f_n(u_{Y_n}Y_n) + f_n(u_{Y_n}Y_n)$
 $f_n(u_{T}a_{Y_n}Y_n) + f_n(u_{Y_n}Y_n) + v_{N-t}(u_{T}y_n)$
 $f_n(u_{T}a_{Y_n}Y_n) + f_n(u_{Y_n}Y_n) + v_{N-t}(u_{T}y_n)$
 $f_n(u_{T}a_{Y_n}Y_n) + f_n(u_{T}v_n) + v_{N-t}(u_{T}y_n)$
 $f_n(u_{T}a_{Y_n}Y_n) + v_{N-t}(u_{T}y_n) = v_{N-t}$

So
$$p' = \langle E_{X_{1}}, E_{X_{2}}, \psi_{1} \rangle = X \cap p^{2}$$

(In general, prove by induction)
Griffiths' theory
 $X = \text{smooth pays where p_{X} , $U = X \setminus Y = \hat{I} = X$
 $Y = \text{smooth hypersurface}$, $U = X \setminus Y = \hat{I} = X$
 $p_{x} \in \text{Fole Order Filtration}$
 $G_{x} \text{ the complexe } \Omega(X)$, where $S_{x}^{L}(XY) := \lim_{X} \Omega_{x}^{L}(XY)$,
we define
 $p' \Omega_{x}^{-}(XY) : 0 \rightarrow - \rightarrow 0 \rightarrow S_{x}^{L}(Y) \rightarrow S_{x}^{L}(XY) \rightarrow$
 $(\text{helpse, mpand by Gifter) - - \rightarrow \Omega_{x}^{L}((1-p+1))Y) \rightarrow - -$
Theorem : There are Hitration
 $P = F$
 $S_{x}^{2}(1-p+1)Y \rightarrow - -$
 $\text{Theorem : There are Hitration
 $S_{x}^{2}(XY), P \rightarrow (J_{x}^{2}(XY), P) \rightarrow (J_{x}^{2}(XY), P)$
 \downarrow
 \downarrow
 $F = F$
 $T_{x} \text{ particular, } P' H'(V, G) = F' H'(V, G)$
 $f_{x} \text{ theorem of the order of the o$$$

$$\begin{array}{c} \underbrace{\operatorname{Auequition}}_{X, X_{X}}(h_{1}) = 0 \quad \text{for } h_{2}], \quad 1 \ge 1, \quad p \ge 0 \\ \underbrace{\operatorname{Kennk}}_{X, X_{X}}(h_{1}) = 0 \quad \text{for } h_{2}], \quad 1 \ge 1, \quad p \ge 0 \\ \underbrace{\operatorname{Kennk}}_{X, X_{X}}(h_{1}) = 0 \quad \text{for } h_{2}], \quad 1 \ge 1, \quad p \ge 0 \\ \underbrace{\operatorname{Kennk}}_{X, X_{X}}(h_{1}) = 0 \quad \text{for } h_{2}], \quad 1 \ge 1, \quad p \ge 0 \\ \underbrace{\operatorname{Kennk}}_{X, Y} \cong \operatorname{Kennk}_{X, Y} = \operatorname{Kennk}_{X} = \operatorname{Kennk}_{X}$$

·Now alone
$$f is anyle and best, the ne large SES
 $\rightarrow H_{pnn}^{n}(X) \xrightarrow{j} H^{n}(U) \xrightarrow{j} H^{n}(Y) \xrightarrow{j} T$

$$\frac{H^{n}(X)}{LH^{n}(X)} = \frac{H^{n}(X)}{(2H^{n}(Y))}$$

$$\frac{H^{n}(X)}{LH^{n}(Y)} = \frac{H^{n}(X)}{(2H^{n}(Y))}$$

$$\frac{H^{n}(V)}{LH^{n}(V)} \xrightarrow{j} H^{n}(Y)$$

$$\frac{H^{n}(V)}{Gr_{W}} \xrightarrow{j} H^{n}(V)$$

$$\frac{H^{n}(V)}{H^{n}(V)} \xrightarrow{j} H^{n}(Y)$$

$$\frac{H^{n}(V)}{H^{n}(V,C)} \xrightarrow{j} F^{n}(H^{n}(Y,C))$$

$$\frac{H^{n}(P^{n}, Kp(P7))}{H^{n}(P^{n}, \Sigma_{p}^{n}(V-1)Y)} \xrightarrow{j} H^{n}(P^{n}, K_{p}n(P^{n})Y)$$$$

(1° S'Pd-n-Theoren (Gartfilles) If we identify $H^{\circ}(K_{pn}(p\gamma)) \cong H^{\circ}(p^{n}, \mathcal{D}_{pn}(Pd-n-1))$, then $dH^{\circ}(P^{n}, SU^{n}((p-1)\gamma)) + H^{\circ}(p^{n}, K_{pn}((p-1)\gamma)) \cong J_{f}^{\mathcal{B}d\mathcal{M}}$ In pontrander, $\mathcal{R}_{f}^{\mathcal{P}d-n\mathcal{A}} \cong H^{n\mathcal{P},\mathcal{P}(1,\gamma)}_{pm}(\gamma)$ S = G[Vo, -> Xn], Y=V(f) $J_{f} = \langle \frac{\partial f}{\partial x_{0}}, -\frac{\partial f}{\partial x_{1}} \rangle$ Rf:= Jf Renark: We know exactly then kf = 0. Theorem (Moenlay) CAT = (i=v, -, n) be a regular cef. of homogeneous polynomials of degree d. . Set $R_G = \frac{G[X_0, -, X_n]}{G_e}$. Then Rg 3 graded Gorenstein with soule in degree N. $N = \frac{1}{2} \frac{d_1 - n_1}{d_1 - n_1}$ (In other words, there 3 a perfect pairing $R_g \otimes R_g \to R_g'$) (In particular, $R_g \neq 0 \neq > 0 = f \leq N$)

Cor :
$$M_{prin}^{r}(\gamma)$$
 hos contran $\geq C \iff n \geq Cd$.
(pf) $M_{prin}^{r}(\gamma) = R_{f}^{r}(+ 0 \iff 0 \leq pd - n - 1 \leq (n+1)(d-2)$
drong halls for $d \geq 2$
Conflictive onterestrin cale:
 $M = smooth prof. raviety of dow n.$
 $Y = conglete interestrin of certains of angle line budles
 L_{1}, \dots, SL_{T} (submar)
Set $\vartheta = L_{1} \vartheta L_{2} \vartheta - - \vartheta L_{T}$ and $X_{2} = V(if_{1}, f_{2}, \dots, f_{T})) \leq P(E)$
 $\frac{Origination}{Q} = \frac{f_{1}}{K_{2}} \frac{J_{2}}{J_{2}}$
 $\frac{Origination}{Q} = \frac{f_{1}}{K_{2}} \frac{J_{2}}{J_{2}}$
 $\frac{Origination}{X} = \frac{f_{2}}{K_{2}} \frac{J_{2}}{J_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{1}}{J_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{1}}{J_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{1}}{M_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{1}}{M_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{1}}{N_{2}} = \frac{J_{1}}{M_{2}}$
 $\frac{J_{1}}{M_{2}} = \frac{J_{1}}{M_{2}}$
 $\frac{J_{1}}{M_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{2}}{M_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{1}}{M_{2}} = \frac{J_{1}}{M_{2}}$
 $\frac{J_{1}}{M_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac{J_{2}}{M_{2}} = \frac{J_{2}}{M_{2}}$
 $\frac$$

Ŋ