Hodge Conivean of Hypersiffres
Def. (Hhoge Comivean.) A Hodqe structure $H_{c}=\bigoplus_{p \geq 0} H^{p, \& p}$ has thatge conileax c if $H^{p, k-p}=0$ for $p<c$ all $H^{c, l-c} \neq 0$

$$
\left(c \leq \frac{k}{2}\right)^{J}
$$

(henee for $p>k-c$)

- If X is a shooth complete intersection in \mathbb{P}^{n} "c.bimen $x=\gamma$, then by Lefschetz hyperpine theoren
\Rightarrow Only H^{n-2} prim (x) is intenstaty.

$$
\begin{aligned}
& H^{k}\left(\mathbb{P}^{n}\right) \xrightarrow{\hookrightarrow} H^{k}(x) \text { for } k \in n-x \\
& H^{n-r}\left(\mathbb{P}^{n}\right) \longleftrightarrow H^{n-r}(x) .
\end{aligned}
$$

- By Griffiths thery of thdye fitration of hypasufaces cand later germatiration by Terasora, Konmo, Dinca, Esnanlt-Lerine-Viehrieg), we have
Theorem. 1 : $X \subseteq \mathbb{P}^{n}$ a snoith complete intersection of hypersantuces of deyvee $d_{1} \leq d_{2} \leq \cdots \leq d r$
Them $H_{\text {pron }}^{n-1}(x)$ hus shige conivean $\geqslant 0 \Leftrightarrow n \geqslant \sum_{i=1}^{r} d_{i}+(c-1) d r$
 $X \leq \Psi^{n}$, snoth coppete interection of σ hypersinfuces of dynce depee $d r \leqslant d_{2} \leqslant-\leq d v$
If $n \geqslant \sum_{i=1}^{r} d_{i}+(c-1) d r$, then $\left.d: C H_{i}(x)_{Q Q} \rightarrow H^{2 n-2 r-2 \bar{r}}(x, Q)\right)$ is injectine for $i \leq c-1$.
- When $c=1, \quad n \geqslant \sum_{i=1}^{k} d_{i} \Longleftrightarrow X$ is Fano coppleter intansection

$$
H^{\imath}\left(x, K_{x}\right)=0
$$

$\Rightarrow X$ i rationally cinnetted $\Rightarrow C H_{0}(X)=0$
(S. (*) Cinjectune holls)

- Unkman for $c \geqslant 2$
- Therem (Voisn, 1996)

For each (n, d), there is $X \subseteq \mathbb{P}^{n}$ a hypersuruae of degzeed that satisjoes Cojecture

Theomes (Lerine-Esnault-Viehweq, 1997)
Let $X \subseteq P^{n}$ be a snooth hypersmalaces of degeee d.
Assime thet X is spomeel by r-planes \mathbb{P}^{r}, i.e. $\forall x \in X$ \exists a limen subspuee \mathbb{P}^{r} of \mathbb{P}^{n} such that $x \in \mathbb{P}^{r} \subseteq X$.
Then ${ }^{1 /} C H_{l}(x)_{\text {lom }} \otimes Q=0$ for $l \leq r-1$
(2) $\operatorname{CH}_{r}(x)_{Q Q}$ is generataed by the classes of $\mathbb{P D}^{r} \leq X_{1}$.

Poof (of $E-L-V$)
Let $F=\operatorname{Cor}(r, X) \subseteq \operatorname{Cr}\left(\gamma, P^{\gamma}\right)$
$\zeta_{\text {porametetering }} p^{r} \subseteq X$
geenni $Q=\{(x, P) \in X \times F \mid x \in P\{$ - the univered fainly
(a) $Q \xrightarrow{q} \rightarrow X$
$p \downarrow$
pravionc F
bande
(1) of is surjetine by akemption

巴 rephaery 7 by its disingulamiono ond its subvariety, me may assme q s qeworic finte.
(b) Let $\left.\underset{\rightarrow}{h}=G\left(\theta_{x}(1)\right), H=q^{x} h=O_{Q} C_{1}\right)$
(1) $q_{x} g^{*}=(d y d) I d$
(2) $q_{x}\left(q^{*} h-\alpha\right)=h \cdot q_{x} \alpha \quad$ (pongetion formula)
(2) $l_{*} l^{*}=d l$
(4) Q is a profetive budle of rank r over F

So we have a decomposition of $C H(Q)$ conpectible with leray-Hrsoh theren for calomlogy:

$$
\begin{aligned}
& \cdot \operatorname{CH}(Q)=\bigoplus_{0 \leq k \leq r} H^{k} p^{*} C A l l-r+k \\
& \cdot H^{m}(Q)=\bigoplus_{0 \leq k \leq r}\left[H^{k} p^{*} H^{m-2 k}(F)\right. \\
& \Rightarrow \text { For } l<r, C H_{k+1}^{\prime}(Q) \xrightarrow{-4} \operatorname{CH}_{l}(Q)
\end{aligned}
$$

and $\left.\mathrm{CH}_{r_{+}}(Q) \xrightarrow{+H} \mathrm{CH}_{\gamma^{\prime}}, Q\right)$ is supectine except for
(5) Eventhorg is conpentible with claces mapp $P^{*} C H(F)$, thess we can cosider $\mathrm{CiH}_{\mathrm{l}}()_{\text {hon }}$ vesion
(6)
$\mathrm{Cite}_{e}\left(P^{n}\right)_{\text {hor }}=0 \Rightarrow$ cs is proved
For (2), $q_{x} C_{H_{0}}(7)$ is geverated by \mathbb{R}^{γ} planes.

Leanna (footmen)
$X=V(q) \subseteq p^{n}$, $f=$ deane d meth $d \leq n$
Then \mathbb{P}^{n} is covered by lines l with either $l \cap X=$ point
(阤) Say

$$
x=0 \in A^{n} \subseteq \mathbb{P}^{n}, \lambda \in \mathbb{P}^{n-1} \quad \text { or } l \leq X \text {. }
$$

$$
l=\left\{t \lambda \mid t \in \mathbb{A}^{\prime}\right\}
$$

Then $f(t \lambda)=t^{d} f_{d}(\lambda)+\cdots+f_{0}(\lambda), f_{0}(\lambda)=0$ size $x \in V(f)$.

$$
\text { So } \quad \ln x=\{x\} \Leftrightarrow f_{d-1}(\lambda)=\cdots=f_{1}(\lambda)=0
$$

Voice's exiouples: Wite $n=c d+s$
Let $f_{1} \in \mathbb{C}\left[x_{0}, \cdots, x_{1}\right]$

$$
f_{2},-, f_{C-1} \in \mathbb{C}\left[X_{1},-, X_{n}\right]
$$

$$
f_{c} \in \mathbb{Q}\left[x_{1}, \ldots, x_{d+s}\right]
$$

Set $f\left(x_{0}, \ldots, x_{c d+s}\right)=f_{1}\left(x_{0},, x_{d}\right)+f_{2}\left(x_{\lambda_{-1}}, \ldots, x_{2 d}\right)+\cdots$

$$
\cdots+f_{c-1}\left(X_{(-2) d+1}, \cdots X_{(c-1)}\right)+f_{c}\left(X_{(-1) d+1}, \cdots, X_{c n+1}\right)
$$

$\xrightarrow{C \text { lain }}: \forall x \in X=V(f)$, theme exists \mathbb{P}^{C-1} such tat $\mathbb{P}_{x \in}^{C-1} \cap X=\mathbb{P}^{C-2}$

$$
\in \mathbb{P}^{(-1} \subset X
$$

$$
\begin{aligned}
& \text { or } l s x \sim \begin{array}{c}
f_{d}(\lambda) \neq 0 \\
f_{a}(x)=0
\end{array} \quad\left(\begin{array}{l}
\text { Only } d-1 \text { equations } \\
\text { Sine } d \leq n, \text { so } \forall x \text {, there } \\
\text { is sine } l \\
\text { worth } l \cap x=\{\times\}
\end{array}\right) \\
& \text { or } l \leq x \text {. }
\end{aligned}
$$

For simpliatty, consider the case $c=2, n=2 d+3, s \geqslant 0$

$$
f=f_{1}\left(X_{0},-, X_{n}\right)+f_{2}\left(Y_{1}, \sim, Y_{n+S}\right)
$$

- Coven $\left(x_{0}, y_{0}\right)+\mathbb{P}^{2 d+s}$, mayy assinc $p^{d} \supseteq p^{d+s}-1$

$$
x_{0}, y_{0} \neq 0 .
$$

$$
\left[x^{y}, 0\right] \quad[0, y]
$$

$u\left(x, y_{0}\right) \quad v\left(a x_{0}, y_{1}\right)$

$$
\left\langle\left[x_{0}, 0\right], p^{d+s-1}\right\rangle=p^{d+s}
$$

By lna, $\exists \Delta^{\prime} \subseteq \mathbb{p}^{d+c}$ st $f\left(a\left(x_{0}, y_{0}\right)+v\left(a x_{0}+y_{1}\right)\right)=v^{d}$

$$
\underbrace{\left.f_{1}(d+a) x_{0}\right)+f_{2}\left(u f_{0}+v y_{1}\right)}_{(n+a v)^{d}}
$$

Cosister $m^{2}=\left\langle\left[x_{0}, 0\right], \Delta^{\prime}\right\rangle$.
Then $f\left(t\left[x_{1}, 0\right]+u\left[x_{0}, y_{v}\right]+v\left[a x_{0}, y_{1}\right]\right)=(u+a v)^{d}+v^{d}-(u+a v)^{d}$

$$
=v^{d}
$$

So $p^{\prime}=\left\langle\left[x_{1}, 0\right],\left[x_{0}, y_{0}\right]\right\rangle=X \cap \mathbb{p}^{2}$
(In general, prove by indention)
Gonffiths' theory
$X=$ smooth pi. variety. dan $x=n$
$Y^{\prime}=$ smooth hapersutace, $\quad U=X \backslash Y \longleftrightarrow X$ Def (Pole Order Filtration)
O_{n} the complex $\Omega_{x}(* Y)$, where $\Omega_{x}^{l}(* Y):=\frac{\lim _{h}}{h} \Omega_{x}^{l}(h Y)$, we duple

$$
\rho^{p} \Omega_{x}^{2}(* y): 0 \rightarrow \cdots \rightarrow 0 \rightarrow \Omega_{x}^{p}(\varphi) \rightarrow \Omega_{x}^{p+1}(2 \varphi) \rightarrow
$$

Theorem: There are filevel guvasi-rsiomphias

$$
P=F
$$

bite filiation
In particular, $P^{P} H^{d}(U, C)=F^{P} H^{k}(V, C)$
Cerate: If $X=P^{n}$ ad Y is a singular hypersatace, then Relignou-Dinca shoos the $P^{p} H^{k}(V, C) \geq F^{P} H^{k}(V, C)$, aol ane not equal in pereseal.

Assanption
(*) $H^{i}\left(x, \Omega_{x}^{p}(k-1)\right)=0$ for $k \geq 1, i \geqslant 1, p \geqslant 0$
Renank: : Condition holds if
(a) y B sufficiethy ample
or (b) Y is only ample but X sotisfies Bott's vanishing therem
Comloy (Corffiths)

$$
\left(z_{y}, x=p^{n} \text { or } x \text { i tric }\right)
$$

- Under $*$ assuption, $p^{p} \Omega_{\lambda}^{-}(* Y)$ is E-acyelic.

$$
\Rightarrow F^{p} H^{d}(U, \mathbb{C})=H^{d}\left(x, p^{p} \Omega_{x}^{\dot{x}}(* y)\right)=H^{h}\left(P\left(x, p^{p} \Omega_{x}(* y)\right)\right.
$$

Ir patiuler, for $l=n, F^{p} H^{n}(U, C)=\frac{\mathcal{Y}^{0}\left(\Omega_{x}^{n}((d-p+1) Y)\right)}{d Y^{0}\left(\Omega_{x}^{n-1}((d-p) Y)\right)}$

- On the other hund, there is an exaect sequevee of Mits:

$$
\begin{aligned}
& H^{k}(x) \rightarrow H^{k}(U) \rightarrow H^{k+1}(x, U) \rightarrow H_{V}^{k+1}(x) \rightarrow H^{k+1}(U)
\end{aligned}
$$

- Nor assume l_{i} ample and $b=n$, The ne lane $\delta E S^{9}$

$$
\begin{aligned}
& \underbrace{\frac{H^{n}(x)}{L H^{n-2}(x)}=\frac{H^{n}(x)}{L_{x}+H^{n-n}(Y)}}_{W_{n}^{\prime \prime} H^{n}(V)} \xrightarrow[\operatorname{Gor}_{r_{w}^{n+1}}^{n} H^{n \prime}(U)]{\operatorname{Lar}\left(H^{n+1}(Y) \xrightarrow{L_{x}}\right.} H^{n+1}(x))
\end{aligned}
$$

$$
\begin{aligned}
& \frac{H^{p}\left(p^{n}, K_{p}(p y)\right)}{d H^{n}\left(p^{n}, \Omega_{p p^{n}}^{n-1}(p-1) Y\right)} \\
& H_{\text {pron }}^{n p, \psi_{1}}(t, \mathbb{C}) \\
& \text { 少 } \\
& \frac{H^{0}\left(\mathbb{p}^{n}, K_{p^{n}}(\varphi Y)\right)}{d_{1+1}^{0}\left(\left(p^{n}, \Omega_{\mathbb{p}^{n}}^{n-1}(\psi-1) Y\right)+H^{0}\left(p^{n}, K_{p^{n}}(p-1) Y\right)\right.}
\end{aligned}
$$

Theous (Cratfiths)
If we identity $\left.H^{10}\left(K_{p^{n}}(p\rangle\right)\right) \cong H^{0}\left(p^{n}, \emptyset_{p^{n}}(\gamma d-n-1)\right)$, then $\left.\left.d H^{0}\left(\mathbb{P}^{n}, \operatorname{sic}_{p}^{n}((p-1)\}\right)\right)+H^{0}\left(p^{n}, K_{p^{n}}((p-1)\}\right)\right) \cong J_{f}^{p d-n-1}$ In penticuiler, $R_{f}^{P_{d}-n-1} \cong H^{n-p, p-1}(-)$

$$
\begin{aligned}
& f=C\left[1 x_{0}, \rightarrow x_{n}\right], Y=V(f) \\
& J_{f}=\left\langle\frac{\partial f}{\partial x_{0}},--\frac{\partial f}{\partial x_{i}}\right\rangle \\
& R_{f}:=\frac{S}{I_{f}}
\end{aligned}
$$

Renant: We know exactly shen $k_{f}^{k} \neq 0$.
Theown (droenlay)
cut $G_{-} \quad(i=0,-, n)$ be a reguler cef.- of Inmogereas polynomands of deegee d_{G}. Set $R_{G}=\frac{C\left[X_{0}, \ldots, X_{n}\right]}{\left\langle G_{0}, \ldots, G_{n}\right\rangle}$.
Then R_{e} is graded Corountern with socler in degnee N.

$$
W_{1}=\sum_{i=0}^{n} d_{i}-n-1
$$

(Ir other words, thene B a perkeet peaning $\left.R_{g}^{k} \otimes R_{G}^{N L-h} \rightarrow R_{g}^{N}\right)$ $\left(\right.$ In paticuler, $\left.R_{g}^{k} \neq 0 \Leftrightarrow 0 \leq h \leq N\right)$

Cor: $=H_{p o n h}^{n-1}(y)$ has cimbean $\geqslant c \Leftrightarrow n \geqslant C d$
(pf) $H_{\text {prom }}^{n-1, p-1}(Y)=R_{f}^{p d-n-1} \neq 0 \Longleftrightarrow 0 \leq \underbrace{}_{\text {diweny hals for } d \geqslant 2} \Longleftrightarrow \frac{p d-n \mid \leq(n+1)(d-2)}{}$ $p \leq\left\lfloor\frac{n-1}{2}\right\rfloor$
Complete ontercetion case:
Terasoma's trick:
$W=$ smoth por ramiety of $d m n$
$X=$ Conplete inbercection of sections of anple line budles $L_{1}, \rightarrow L_{r}(\operatorname{codin} r)$
Sit $\varepsilon=L_{1} \otimes L_{2} \oplus \ldots \Theta L_{r}$ and $X_{z}=\frac{V\left(f_{1}, f_{2},-, f_{r}\right)}{\sigma} \subseteq P(\varepsilon)$
Observation: ${ }^{k} X_{z} j_{z}$
(2) $P\left(\left.\varepsilon\right|_{x}\right) \subseteq w_{z}$
$W_{z} \backslash X_{z}$
$\downarrow \pi_{0} \downarrow$
ond \downarrow is an atfore vector lulle
$X \subseteq W$

$$
W \backslash X
$$

(2) $\left(W_{z}, X_{z}\right)$ scatisfles © condition if W satiofires Bott's vanishy.
(2) $\frac{\text { Propsition }}{\pi \text { an Bopuoration of }}=H_{\operatorname{van}}^{n-r}(x, Q) \xrightarrow{L_{0} 0 \pi_{0}^{*}} H_{\operatorname{van}}^{n+r-2}\left(X_{z}, V\right)$)
(㫙) We hav

$$
\begin{aligned}
& 0 \rightarrow \frac{H^{n+r-1}\left(W_{j}\right)}{I_{m} \tilde{j}_{x}} \rightarrow H^{\text {ners }}(W-X)^{\text {Res }} \rightarrow H_{\operatorname{Van}}^{n-\gamma}(X) \rightarrow v \\
& \text { Chain } \rightarrow \int_{4} \int_{3} \quad h_{2} r_{0}^{*} \\
& 0 \rightarrow \frac{H^{n+r-1}\left(W_{z}\right)}{\operatorname{In} \bar{\delta}_{z}} \rightarrow H^{n+-1}\left(W_{z}-X_{z}\right) \rightarrow H_{V m m}^{n+\gamma-2}\left(X_{z}\right) \rightarrow \nu
\end{aligned}
$$

- ut $\left.l=G_{1}\left(l_{w} C_{1}\right)\right)$. Thes by lefichatz happuplane theoen

$$
\operatorname{In}\left(H^{w-1}(x) \xrightarrow{\dot{\gamma}_{x}} H^{n+\gamma-1}(W)\right)=\operatorname{In}\left(1^{n-1}(W) \xrightarrow{\operatorname{Cr}(x)} H^{n+\gamma-1}(W)\right)
$$

- Akso, $H^{\mid h r r-1}\left(W_{z}\right)=e_{\bar{\pi} \leq r-1} l^{i} \cup H^{n-r-2 i}(W)$ and

$$
\begin{aligned}
& \operatorname{In} \sigma_{q_{x}}=\operatorname{in}\left(U G_{1}(w)\right)^{\prime \prime} i \operatorname{In}(U l)^{\prime \prime} \\
& \text { So } \frac{H^{n+e-1}\left(V_{z}\right)}{I_{v} J_{z_{x}}^{\prime}}=\frac{H^{n+r-1}(w)}{I_{n}(V \operatorname{Cr}(x))} \text { since } d^{v}=-\sum_{i \leq v-1}(-1)^{r-i} e^{i} V \pi^{i} V_{v i-i}(t)
\end{aligned}
$$

Now for $W=P^{n}, L_{i} \approx O\left(d_{i}\right)$, he have $F^{n-1} H_{p a r}^{1+r}(X) \quad 13$

$$
\begin{aligned}
& H^{0}\left(W_{z}, K_{u_{E}} \otimes \emptyset_{u_{z}}(p)\right) \longrightarrow F^{n+\gamma-p} H^{n+\gamma-1}(V, C) \rightarrow F^{n+\gamma-1} p^{p-1} H_{r_{m}+2}\left(X_{E}\right) \\
& \text { II } \\
& \text { Nole : } K_{H_{z}} \equiv O_{W_{z}}(-r)+\pi^{x} \operatorname{det}(\varepsilon)+\pi^{+} K_{W}
\end{aligned}
$$

iby meletive Fuler sy,

$$
H^{\prime}\left(w_{z}, O_{r_{E}}(p-r) \otimes r^{*}\left[\left(\Sigma_{j} d_{i}-n-1\right)\right)\right.
$$

1 poj. formater

$$
\frac{\mathscr{P}^{0}\left(w, S^{p-r}\left(\oplus O\left(d_{i}\right)\right) \otimes O\left(\sum d_{i}-n-1\right)\right)}{\text { So } \quad \text { if } \sum d_{i}+(p-r) \sup \left\{d_{i}\right\}-n-1<0}
$$

