
PURE HODGE STRUCTURES AND STANDARD CONJECTURES

NICOLÁS VILCHES

Abstract. In algebraic geometry, Hodge structures are one of the key tools to

understanding cohomology of algebraic varieties. Their definition is motivated

by the decomposition of the singular cohomology of a compact Kähler mani-
fold, first studied by William Hodge in the 1930’s. Further developments have

extended similar results to non-compact manifolds, singular varieties, and so

on.
In this talk we will focus on pure Hodge structures, discussing their basic

properties and key examples. This will allow us to state the so-called “standard

conjectures”, a set of problems regarding the interplay between cohomology
classes and algebraic cycles.

Notes prepared for the Decomposition of the diagonal seminar (Spring
2024), organized by Nathan Chen and Yoonjoo Kim at Columbia University.
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1. Pure Hodge structures

Our starting point is the following definition.

Definition 1 ([Voi14, 2.20], cf. [Voi02, 7.4]). Let k be an integer. A weight k
rational (pure) Hodge structure (V, V p,q) consists on a Q-vector space V , and a
C-vector space decomposition

VC := V ⊗Q C =
⊕

p+q=k

V p,q,

satisfying V p,q = V q,p.

We point out that this definition also makes sense replacing Q with Z or R, in
which case we talk about integral (resp. real) Hodge structures. Unless explicitly
mentioned, all Hodge structures will be over Q.

Example 2. Let us present two simple but interesting examples.

(1) Let m be an integer. Take V = Q, with the decomposition V −m,−m = C
(and zero otherwise). This is a rational Hodge structure of weight −2m.
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(2) Let V be a vector space, and let I : V → V be a linear transformation
satisfying I2 = −1. (The key example to keep in mind is the matrix[

0 −1
1 0

]
,

as we will see later.) We extend scalars to get IC : VC → VC, which is
now a diagonalizable operator. Let V 1,0 (resp. V 0,1) be the eigenspace of

eigenvalue i (resp. −i). Then V 1,0 = V 0,1, and so this defines a weight 1
rational Hodge structure on V .

(3) The previous example can be generalized a bit: given 0 ≤ k ≤ dimV , the
vector space ∧kV carries a weight k rational Hodge structure. In fact, we
have

∧kV ⊗ C ∼=
⊕

p+q=k

∧pV 1,0 ⊗ ∧qV 0,1.

We use this to set (∧kV )p,q := ∧pV 1,0 ⊗ ∧qV 0,1.

Example 3. Some linear algebra operations can be extended naturally to Hodge
structures. For instance, if V and W are two Hodge structures of the same weight,
V ⊕ W carries naturally a Hodge structure. Similarly, we can take the tensor
product of two Hodge structures, whose weight will be the sum of the previous two.

Remark 4 ([Voi14, p. 24]). Given a Hodge structure (V, V p,q) of weight k, we define
a filtration of VC via

F pVC :=
⊕
r≥p

V r,k−r.

This is a decreasing filtration, satisfying

V p,q = F pVC ∩ F qVC.

We could have defined the Hodge decomposition in terms of a filtration instead.
This might look weird on a first glance; however, in some cases it is more natural.

1.1. Motivation: Hodge decomposition. Our definition is motivated by the
Hodge decomposition. Informally, given a compact Kähler manifold X, this results
endows Hk(X,Q) with a weight k Hodge structure. We follow the discussion on
[Voi02, §6].

Let X be a compact Kähler manifold, and fix a metric on X. We have an
isomorphism Hk(X,C) ∼= Hk(X), the set of complex valued harmonic forms for
the Laplacian associated to this metric. This way, by separating the forms on
types, we get an induced decomposition

Hk(X,C) =
⊕

p+q=C
Hp,q,

where Hp,q are the set of harmonic forms of type (p, q). It turns out that this
decomposition does not depend on the metric (cf. [Voi02, 6.11]), and that the
components Hp,q satisfy the relation

Hp,q = Hq,p,

where the conjugate is with respect to the C-vector space structure on Hk(X,C) =
Hk(X,Q)⊗Q C.

Putting all together, we get the following result.
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Proposition 5 (cf. [Voi14, pp. 24–25; Voi02, pp. 142–143]). Let X be a compact
Kähler manifold, and let 0 ≤ k ≤ 2 dimX. Then Hk(X,Q) carries a weight k
rational Hodge structure.

Interestingly, the filtration associated to this Hodge structure can be understood
directly from the sheaves of holomorphic forms. To do this, recall that by the
Poincaré lemma we have that the complex

C → OX
∂−→ Ω1

X
∂−→ Ω2

X
∂−→ · · ·

is exact. (Here either X is a complex manifold, or the analytic space associated
to a smooth variety.) This way, the cohomology Hk(X,C) is identified with the
hypercohomology of the complex

Ω•
X = [OX

∂−→ Ω1
X

∂−→ Ω2
X

∂−→ · · · ]

Now, let F pΩ•
X = Ω•≥p

X be the bête (or naive) filtration. This is a decreasing
filtration, endowed with maps to Ω•

X . Taking cohomology we get the following

Proposition 6 (Frölicher spectral sequence, cf. [Voi02, §8.3.3]). There is a spectral
sequence

Ep,q
1 = Hq(X,Ωp

X) ⇒ Hp+q(X,Ω•
X).

If X is compact Kähler (e.g. if X comes from a smooth, projective variety), then
this sequence degenerates at E1. The induced filtration of Hp+q(X,Ω•

X) is exactly
the Hodge filtration.

This approach has some extra advantages. For instance, it allows us to construct
“Hodge filtrations in families”, cf. [Voi02, §10.2.1.]

2. Polarizations

Definition 7 ([Voi14, 2.21]). Let (V, V p,q) be a weight k rational Hodge structure.
A polarization on V is a non-degenerate pairing (·, ·) on V , symmetric (resp. skew
symmetric) for k even (resp k odd), satisfying the following two conditions.

The Hermitian pairing H(a, b) = ik(a, b) on VC satisfies the following.

(1) (First Hodge–Riemann bilinear relations) The Hodge decomposition of V
is orthogonal with respect to H.

(2) (Second Hodge–Riemann bilinear relations) The restriction H|V p,q is defi-
nite of sign (−1)p.

One of the nice properties of having a polarization is that we get decomposition
of Hodge structures into ones without sub-Hodge structures.

Theorem 8 ([Voi14, 2.22]). Let (V, V p,q) be a rational polarized Hodge structure,
and let U ⊂ V be a sub-Hodge structure. Then V decomposes as a direct sum
V = U ⊕W .

Proof. Note that the restriction of (·, ·)U is a non-degenerate pairing. In fact, each
Up,q ⊂ V p,q is a non-degenerate subspace (as H is definite on V p,q), and the Up,q

are orthogonal to each other.
We now let W = U⊥. We note that

W ⊇
⊕

p+q=k

(Up,q)⊥ ∩ V p,q,
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and by dimension counting these are actually equal. It follows that W is a sub-
Hodge structure, and that V = U ⊕W . □

Corollary 9 ([Voi02, 2.24]). Let ϕ : V → W be a morphism of rational Hodge
structures. Then kerϕ and Imϕ are sub-Hodge structures of V and W , respectively.

Moreover, assume that V is polarized. Then V contains a sub-Hodge structure
V ′ so that ϕ induces an isomorphism V ′ → Imϕ.

Proof. The first part is clear. For the second, we just take V ′ = (kerϕ)⊥. □

The key example for polarized Hodge structures comes from smooth, projective
varieties. Let X be a smooth, projective variety of dimension n, and pick an ample
line bundle L . If ω = c1(L ) ∈ H2(X,Q) is the first Chern class, then ω ∪ −
induces1 an operator

L : Hk(X,Q) → Hk+2(X,Q),

called the Lefschetz operator. For k ≤ n, it induces isomorphisms

Ln−k : Hk(X,Q)
∼−→ H2n−k(X,Q),

which is known as the hard Lefschetz property.
Using the Lefschetz operator, we get a decomposition

(1) Hk(X,Q) =
⊕

r:k−2r≥0

LkHk−2r(X,Q)prim,

where Hi(X,Q)prim is the kernel of Ln−k+1.
At last, we have an induced pairing

(α, β)k =

∫
X

ωn−k ∪ α ∪ β.

on Hk(X,Q).

Lemma 10 ([Voi02, 6.31]). For k ≤ n, the decomposition (1) is orthogonal with
respect to the Hermitian pairing Hk induced by (−,−)k.

Up to some signs, the previous pairing will give us a polarization on each prim-
itive piece.

Theorem 11 ([Voi02, 6.31, 6.32]). On each piece LrHk−2r(X,C)prim, the pairing
Hr induces (−1)rHk−2r. Also, the subspaces Hp,q(X) are orthogonal. Moreover,
the form (−1)k(k−1)/2ip−q−kHk is positive definite on Hp,q

prim := Hk(X,C)prim ∩
Hp,q(C).

3. Hodge classes

We start with a completely abstract definition.

Definition 12 ([Voi14, 2.23]). Let (V, V p,q) be a weight 2k rational Hodge struc-
ture. A Hodge class is a class in V ∩ V k,k.

1Note that [Voi02] is using the wedge product, while [Voi14] uses the cup product. These two
operations can be identified, cf. [Voi02, 5.29]
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The main example of Hodge classes comes, once again, for the scenario on com-
plex varieties. Let X be a smooth, projective variety of dimension n. If Z ⊂ X
is a reduced, irreducible subscheme of codimension k, we defined a cycle class
[Z] ∈ H2k(X,Q). Moreover, we showed that there is an induced map

cl : CHk(X) → H2k(X,Q).

These maps are compatible with the intersection product on CH, and the cup
product on cohomology.

Theorem 13 ([Voi02, 11.20]). The image of cl is contained in the Hodge classes.
This is, for each Z ⊂ X pure of codimension k, the associated cycle [Z] ∈ H2k(X,Q)

lies in Hdg2k(X) := H2k(X,Q) ∩Hk,k.

The most naive question we could ask ourselves if this map is surjective. This
is a naive expectation, as CHk(X) only admits integral sums2. The next naive
question was raised (not in this exact formulation) by Sir William Hodge on the
1950 ICM.

Conjecture 14 (Hodge, 1950). Let X be a smooth, projective variety. Any Hodge

class α ∈ Hdg2k(X) is a linear combination with rational coefficients of Betti cycle
classes of algebraic subvarieties of X, so

α =

N∑
i=1

ai[Zi], ai ∈ Q.

Not many cases are known for the Hodge conjecture. One of the few known cases
is known as the Lefschetz theorem on (1,1) classes.

Theorem 15 (Lefschetz, 1924, cf. [Voi02, 11.30]). The Hodge conjecture holds for
k = 1.

Corollary 16 ([Voi14, p. 27]). The Hodge conjecture holds for k = dimX − 1.

Proof. (Sketch) Recall that the class map is compatible with intersections and
products. Therefore, if H ∈ CH1(X) is the divisor class of an ample divisor, then
the Lefschetz operator associated to ω = c1(H) gives the required isomorphism. □

4. Standard conjectures

Our last objective is to discuss various conjectures related to the Hodge conjec-
ture. These carry the name standard conjectures. We will formulate them following
the discussion of [Voi14, §2.2.3].

It is worth mentioning that these conjectures can be stated in more general
scenarios. The key realization is that the only facts that we will use about the
(singular) cohomology H(−,C) are Künneth decomposition and Poincaré duality.
Therefore, it will be possible to state the “standard conjectures” for ℓ-adic coho-
mology or crystalline cohomology, to name a few. More generally, we can state
these conjectures for any Weil cohomology theory, for which we refer to [Kle94].

2And is well-know that even if we restrict ourselves to H2k(X,Z), we will not get surjectivity
in general. See examples by Atiyah–Hirzebruch, and by Kollár.
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To start, we letX and Y be two (smooth, projective) varieties, where dimX = n.
The Künneth formula and Serre duality yield isomorphisms

(2)

Hm(X × Y,Q) =
⊕

p+q=m

Hp(X,Q)⊗Hq(X,Q)

=
⊕

p+q=m

Hom(H2n−p(X,Q), Hq(X,Q)).

We point out that the right hand side are isomorphisms of vector spaces. This way,
we could ask ourselves what happens if we require that the induced morphism is a
map of Hodge structures.

Lemma 17 ([Voi02, 11.41]). Assume that m = 2r is even, and let n = dimX. A
class

α ∈ Hp(X,Q)⊗Hq(Y,Q) ⊂ Hm(X × Y,Q)

is a Hodge class if and only if the associated morphism

α̃ : H2n−p(X,Q) → Hq(Y,Q)

is a morphism of Hodge structures (of bidegree (r − n, r − n)).

Proof. (Sketch) Note that if α = βk,ℓ⊗γk′,ℓ′ is an element of Hp(X,Q)⊗Hq(Y,Q),
then the induced operator α̃ with complex coefficients is

α̃ : H2n−p(X,C) → Hq(Y,C), η 7→ ⟨η, βk,ℓ⟩X · γk′,ℓ′ .

Now, we use the Hodge–Riemann bilinear relations to conclude. The other direction
is similar. □

This lemma allows us to construct interesting Hodge classes, by constructing
appropriate morphisms of Hodge structures. To start, let X be an n-dimensional
variety, and pick an integer 0 ≤ q ≤ n. We have the identity

id ∈ Hom(Hq(X,Q), Hq(X,Q)) ⊂ H2n(X ×X,Q)

by using (2). this is clearly a morphism of Hodge structures of bidegree (0, 0), called
the kth Künneth component of the diagonal. Therefore, the associated element
δq ∈ H2n(X ×X,Q) is a Hodge class.

Conjecture 18 (Standard conjecture C, cf. [Voi14, 2.27]). The classes δq are
algebraic.

There is a second set of operators that we can look at. Given an ample line
bundle L , we discussed before that the maps

Ln−k = − ∪ (c1(L ))n−k : Hk(X,Q) → H2n−k(X,Q)

are isomorphisms of Hodge structures. In particular, their inverse are also isomor-
phisms of Hodge structures, and so they define Hodge classes λn−k ∈ H2k(X,Q).

Conjecture 19 (Standard conjecture B, cf. [Voi14, 2.28]). The classes λn−k are
algebraic.

At last, the third conjecture we will discuss today is not part of the standard
conjectures, but has a similar flavor to the previous ones. (At least in this form,
this is a conjecture of Voisin.) Informally, it says that we can take algebraic classes
in the “correct” support.
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Conjecture 20 (Voisin, 2013, cf. [Voi14, 2.29]). Let X be a smooth complex
algebraic variety, and let Y ⊂ X be a closed algebraic subset. Let Z be a codimension
k algebraic cycle on X, and assume that [Z] ∈ H2k(X,Q) restricts to zero in
H2k(X − Y,Q). Then there exists a codimension k cycle Z ′ on X (with rational
coefficients), supported on Y , such that [Z] = [Z ′] in H2k(X,Q).

Let us briefly discuss a simple case of this last conjecture.

Lemma 21 ([Voi14, 2.31]). In the previous setup, we have that the conjecture
holds if Y has codimension ≥ k − 1. In particular, the conjecture holds for cycles
of codimension 2.

We will prove this conjecture only when Y is smooth. The only reason for this
is that we will use the Hodge structure on H∗(Y,Q). This can be replaced without
difficulty with the mixed Hodge structure on Y , as we will discuss next week.

Proof. (Sketch) By assumption, the class [Z] lies in the image of the map

H2n−2k(Y,Q) → H2n−2k(X,Q),

where n = dimX. Now, note that both sides carry Hodge structures (by Poincaré
duality), and the map is a (bigraded) morphism of Hodge structures. By Corollary
9, we get that [Z] is in the image of the Hodge classes of H2n−2k(Y,Q).

To conclude, we use our assumption on Y . We have that 2n− 2k is codimension
0 or 2 in Y . This way, all Hodge classes here are algebraic, as required. □
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