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Abstract of the Dissertation

Constructing dual Lagrangian fibrations of compact hyper-Kähler manifolds

by

Yoon-Joo Kim

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

Let π : X → Pn be a Lagrangain fibration of a compact hyper-Kähler manifold X. We

construct its dual Lagrangian fibration π̌ : X̌ → Pn in this dissertation, under a single

assumption that X is deformation equivalent to one of the currently known constructions

of compact hyper-Kähler manifolds. This realizes the Strominger–Yau–Zaslow conjecture

for all known types of hyper-Kähler manifolds X. Our main inputs are the use of (1) the

neutral component of the relative automorphism scheme of π and its torsors, and (2) the

automorphisms of π acting trivially on H2(X,Z). More specifically, we relate these two by

realizing the latter as special global sections of the former. The dual Lagrangian fibration π̌

is then constructed by taking the quotient of π by part of these global sections, resulting a

Lagrangian fibration of a new compact hyper-Kähler orbifold X̌.
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Introduction

Let Y be a compact Calabi–Yau manifold, a compact Kähler manifold with a trivial canonical

bundle. The famous Beauville–Bogomolov decomposition theorem says that up to finite

étale covering, Y must be decomposed into a product of several “irreducible” Calabi–Yau

manifolds. A (compact) hyper-Kähler manifold is one of the irreducible factors arising in this

decomposition theorem. It is a natural higher dimensional generalization of a K3 surface. A

Lagrangian fibration of a hyper-Kähler manifold is a generalization of an elliptic fibration

of a K3 surface. It is a certain holomorphic surjective map π : X → B from a hyper-

Kähler manifold X. Lagrangian fibrations provide an extra flexibility to study hyper-Kähler

manifolds, as many geometric properties of hyper-Kähler manifolds are reflected to their

Lagrangian fibrations.

There are two main topics in this dissertation. The first and foremost topic is a con-

struction of the dual of a Lagrangian fibration of a hyper-Kähler manifold. The motivation

for this problem came from the Strominger–Yau–Zaslow (SYZ) conjecture [SYZ96], which

predicts that a Lagrangian fibration of a Calabi–Yau manifold should admit an appropriate

notion of a dual. More specifically, given a special Lagrangian fibration f : Y → B of a

Calabi–Yau manifold Y , we expect there exists a nice Lagrangian fibration f̌ : Y̌ → B of

another Calabi–Yau orbifold Y̌ that is generically fiberwise dual to the original f .1

Hyper-Kähler manifolds are Calabi–Yau, so the SYZ conjecture should apply to La-

grangian fibrations of hyper-Kähler manifolds. Given a Lagrangian fibration of a hyper-

Kähler manifold π : X → B, we believe there exists a new hyper-Kähler orbifold X̌ and a

holomorphic Lagrangian fibration π̌ : X̌ → B that is generically fiberwise dual to π. Unfor-

tunately, the conjecture neither tells us how to construct a new space X̌ nor how to make

sense π̌ is a Lagrangian fibration.

Our main result is an explicit construction of one distinguished candidate π̌ : X̌ → B

1Strictly speaking, we need to consider both the complex / symplectic structures of Y and Y̌ to correctly

formulate the SYZ conjecture. However, for hyper-Kähler manifolds, it is expected that we can stick to the

complex structure side by applying hyper-Kähler rotations. See [Huy04, §7.3–7.4] and [GTZ13].
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that satisfies all the expected properties of the SYZ conjecture. Before stating our main

result, we define a group that will play an important role throughout the article

Aut◦(X/B) = {f : X → X : π ◦ f = π, f ∗ : H2(X,Z)→ H2(X,Z) is the identity}. (∗)

Theorem A (Theorem 5.2.3 + 5.2.5). Let X be a hyper-Kähler manifold of dimension 2n

and π : X → B its Lagrangian fibration to B = Pn. Assume X is either of K3[n], Kumn,

OG10 or OG6-type. Then there exists a finite abelian group K acting on π such that

X̌ = X/K, π̌ : X̌ → B

satisfies the following:

(i) X̌ is a compact hyper-Kähler orbifold and π̌ is its Lagrangian fibration.

(ii) π̌ is generically fiberwise dual to π.

Moreover, the group K is invariant under deformations of π and is a subgroup of the group

Aut◦(X/B) in (∗).

The theorem is stated in a slightly weaker form, as we omitted some relevant definitions

to minimize our discussion in the introduction. However, we believe the theorem is quite

unexpected even in this weaker form. One may notice that this is quite similar to the duality

between Hitchin fibrations of the moduli sapces of SL and PGL-Higgs bundles on a curve

[HT03], which are Lagrangian fibrations of certain non-compact hyper-Kähler manifolds. We

do not know why such a similar phenomenon happens. Nevertheless, we do understand that

our technical main result (Theorem 5.2.1) directly implies Theorem A. Numerical evidence on

topological invariants of hyper-Kähler manifolds suggests that this may hold for all (compact)

hyper-Kähler manifolds.

Conjecture A (Conjecture 4.3.2). Theorem A holds for any hyper-Kähler manifold X.

The main theorem will be proved in Chapter 5. There are two main ingredients needed

for the proof of Theorem A. The first is a detailed study of the group (∗). This will be done
in Chapter 4. The second is the notion of a relative automorphism scheme, a fine moduli

space of automorphisms of π. This will be discussed in Chapter 3.

The second topic of this dissertation is about computations of the Looijenga–Lunts–

Verbitsky (LLV) structure on the cohomology of hyper-Kähler manifolds. This second topic

is joint work with Mark Green, Radu Laza and Colleen Robles [GKLR, KL20]. Looijenga–

Lunts [LL97] and Verbitsky [Ver95] discovered that the cohomology of every hyper-Kähler

2



manifold admits a certain g-module structure for a simple Lie algebra g. We call the Lie

algebra g the LLV algebra and the g-module structure on H∗(X,Q) the LLV structure on

the cohomology. The complete reduciblity of a g-module yields a cohomology decomposition

H∗(X,Q) ∼=
⊕
λ

mλVλ, (LLV)

which turns out to be an extremely useful topological invariant of X. Our second main result

is an explicit computation of the decomposition (LLV) for all known deformation types of

hyper-Kähler manifolds.

Theorem B (Theorem 2.2.1–2.2.6). The cohomology decomposition (LLV) is explicitly com-

puted for hyper-Kähler manifolds of K3[n], Kumn, OG10 and OG6-types.

We give several applications of this theorem. The first application is an explicit compu-

tation of the Hodge structure of all known types of hyper-Kähler manifolds, generalizing the

previous results of [GS93], [MRS18], etc. in a completely different flavor. The second applica-

tion is a partial solution to a conjecture of Nagai [Nag08] about the monodromy operators of

one-parameter degenerations of hyper-Kähler manifolds. The third application is a possible

numerical bound on the second cohomology of hyper-Kähler manifolds that can be consid-

ered as evidence for a boundedness of deformation types of hyper-Kähler manifolds. The

second and third applications motivated us to question the following simple yet nontrivial

inequality on the cohomology of hyper-Kähler manifolds:

Conjecture B (Conjecture 2.5.1). Every dominant weight λ = (λ0, · · · , λr) appearing in

(LLV) satisfies

λ0 + · · ·+ λr−1 + |λr| ≤ n.

We believe this conjecture should have a deeper meaning and can motivate further studies

on the cohomology of hyper-Kähler manifolds. The conjecture is verified for all currently

known deformation types (Theorem 2.5.2).

Let us now briefly summarize the contents of this article. The following is a dependency

diagram between the chapters. The reader who is only interested in the construction of the

dual Lagrangian fibration can safely skip Chapter 2.

Chapter 1 Chapter 3 Chapter 4 Chapter 5

Appendix A Chapter 2

3



Chapter 1 summarizes some background materials on hyper-Kähler manifolds and their

Lagrangian fibrations. To start, the most basic and important topological properties of hyper-

Kähler manifolds are reviewed. Local deformation behaviors of hyper-Kähler manifolds and

their Lagrangian fibrations are also reviewed. The subtle problem on the base of a Lagrangian

fibration is carefully documented. Finally, many of the known constructions of hyper-Kähler

manifolds / Lagrangian fibrations are collected.

Chapter 2 starts with a crash course on the definition of the LLV structure. The main

computational results (Theorem B) are stated in §2.2. The following section §2.3 presents

similar computational results for the reduced LLV structures and Hodge structures. Finally,

two applications of the LLV structures are briefly presented in the last two sections.

Chapter 3 discusses how the relative automorphism scheme can be used to study La-

grangian fibrations. In fact, we will use only the most manageable part of the relative au-

tomorphism scheme due to a technical difficulty for the non-projective case. This will be

discussed in §3.1. Even this weak discussion already gives us some useful information, such

as the notion of a polarization type and polarization scheme of a Lagrangian fibration. This

will be discussed in §3.2.
Chapter 4 studies the group Aut◦(X/B) in (∗). The first section §4.1 proves it is defor-

mation invariant. The third section §4.3 gets into our core question on relating the group

Aut◦(X/B) with the polarization scheme in Chapter 3. Explicit computation of Aut◦(X/B)

for all known types of hyper-Kähler manifolds is given in §4.4. The remaining section §4.2 is

slightly parallel to our discussion but can be of independent interest; it is about the geometric

origin of many H2-trivial automorphisms.

Chapter 5 is devoted to the more precise statement of Theorem A, its proof and some

related results. The first section §5.1 proposes a new definition of the dual torus fibration.

The second section §5.2 then constructs a dual Lagrangian fibration as a compactification of

a dual torus fibration.

Appendix A provides some representation theory backgrounds. It will collect the facts on

irreducible representations of special orthogonal Lie algebras and their field of definitions.

Restriction representations between two different Lie algebras are discussed as well. Nothing

in this appendix should be new, but some of them were hard to locate in the algebraic

geometry literature so we provide it as an appendix.
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Chapter 1

Hyper-Kähler manifolds and their

Lagrangian fibrations

Introduction

In this chapter, we summarize some basic facts on compact hyper-Kähler manifolds and their

Lagrangian fibrations. Only minimal backgrounds necessary for our future discussions will

be presented. Most of the materials in this chapter are not original, but still there will be a

few new results filling the missing parts in the literature.

A compact hyper-Kähler manifold X is a higher dimensional generalization of a K3

surface. The intersection form on the middle cohomology of a K3 surface correspondingly

generalizes to a quadratic form on the second cohomology of X. This is the Beauville–

Bogomolov lattice, the most basic and important topological invariant of X. A Lagrangian

fibration π : X → B of a compact hyper-Kähler manifold is a generalization an elliptic

fibration of a K3 surface. They are of particular interest due to the following reasons.

(i) Any morphism f : X → Y (that is neither constant nor generically finite) factors

through a Lagrangian fibration X
π−→ B → Y , the Stein factorization of f .

(ii) They provide an extra flexibility to study hyper-Kähler manifolds X, as many proper-

ties of X are reflected into π.

(iii) Largangian fibrations have rich geometry.

At the moment we are writing this article, there are only few known deformation types of

hyper-Kähler manifolds. They are called the K3[n], Kumn, OG10 and OG6-types. We collect

some of their known constructions and if possible, collect the known constructions of their

Lagrangian fibrations.
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1.1 Basic properties of hyper-Kähler manifolds

Definition 1.1.1. A compact hyper-Kähler manifold, or an irreducible symplectic manifold,

is a compact Kähler manifold X with the following properties:

(i) H0(X,Ω2
X) = Cσ for an everywhere nondegenerate global holomorphic 2-form σ.

(ii) X is simply connected.

Any hyper-Kähler manifold in this article will be assumed to be compact, but will not

be assumed to be projective unless explicitly stated. We will typically drop the adjective

“compact” to prevent our terminology becoming too long. The letter X in this article will

always reserved for a hyper-Kähler manifold.

There is another commonly used definition of a hyper-Kähler manifold in the Riemannian

geometry context. Although this second definition will not be extensively used in this article,

we spell it out explicitly because it is equally fundamental to the study of hyper-Kähler

manifolds.

Definition 1.1.2. A compact Riemannian hyper-Kähler manifold is a compact Riemannian

manifold (M, g) of real dimension 4n with the following properties:

(i) Its holonomy group Hol(M, g) ⊂ O(TpM, g) is isomorphic to the compact symplectic

group Sp(n) = Sp2n(C) ∩ U(2n).

(ii) M is simply connected.

Definition 1.1.1 and 1.1.2 are describing a topologically same object. The following result

makes this relation more precise [Joy03, Thm 5.11]. Write X = (M, I) where M is an

underlying C∞ real manifold and I a complex structure on M .

Proposition 1.1.3. (i) Let X = (M, I) be a hyper-Kähler manifold. Then attached to any

Kähler class ω ∈ H1,1(X,R), there exists a unique Ricci-flat metric g making (M, g) a

Riemannian hyper-Kähler manifold.

(ii) Let (M, g) be a Riemannian hyper-Kähler manifold. Then there exists an S2-family of

complex Kähler structures I on (M, g) making each (M, I) a hyper-Kähler manifold.

In other words, we have a one-to-one correspondence

A hyper-Kähler manifold X = (M, I) with the choice of a Kähler class ω

⇔ A Riemannian hyper-Kähler manifold (M, g)

with the choice of a complex (Kähler) structure I

6



1.1.1 The Beauville–Bogomolov form and Fujiki relation

One of the characteristic properties of hyper-Kähler manifolds is the existence of a canonical

quadratic form on its second cohohomology H2(X,Z). This important quadratic form first

appeared in [Bea83b, §8] and [Fuj87, Thm 4.7].

Theorem-Definition 1.1.4. Let X be a hyper-Kähler manifold. Then there exist

(i) a unique primitive nondegenerate symmetric bilinear form q̄ : H2(X,Z)⊗H2(X,Z)→
Z; and

(ii) a unique constant cX ∈ Q>0

such that the following identity holds:∫
X

x2n = cX ·
(2n)!

2n · n!
· q̄(x, x)n for x ∈ H2(X,Z). (1.1.5)

The form q̄ and the constant cX are called the Beauville–Bogomolov(–Fujiki) form and the

Fujiki constant, respectively. The identity (1.1.5) is called the Fujiki relation.

The Beauville–Bogomolov form q̄ and the Fujiki constant cX are the most important basic

topological invariants of X. The expression q̄(x, x) will be often shorten to q̄(x). Note that

even without the primitiveness condition on q̄, the Beauville–Bogomolov form and Fujiki

constant are uniquely defined up to scaling. Usually the Fujiki relation is stated as in (1.1.5),

but one can formally generalize this to the following more useful relation. This identity can

be found, e.g., in O’Grady’s note [O’G13, §4.2]. This explains the role of the constant (2n)!
2n·n! .

Proposition 1.1.6. There exists an identity∫
X

x1 · · · x2n = cX
∑
σ

q̄(xσ(1), xσ(2)) · · · q̄(xσ(2n−1), xσ(2n)) for x1, · · · , x2n ∈ H2(X,Z),

(1.1.7)

where σ ∈ S2n runs through all the 2n-permutations but up to 2n · n! ambiguities inducing

the same expression in the summation. We call (1.1.7) again the Fujiki relation.

Proof. This is a formal consequence of the polarization process. The map P : H2(X,Q)→ Q
defined by x 7→

∫
X
x2n is a homogeneous polynomial of degree 2n in the sense that P (tx) =

t2nP (x) and the “polarization” of P is a symmetric 2n-multilinear map. The claim follows by

the original Fujiki relation in Theorem-Definition 1.1.4 and the uniqueness of the polarization

multilinear map. See, e.g., [Dol03, §1.2] for details on the polarization process.

Given the importance of the Beauville–Bogomolov form and Fujiki constant, it is intrigu-

ing that even the following basic question in [Bea11] can be already hard to answer. We can

7



answer the question positively for all currently known deformation types of hyper-Kähler

manifolds, but to our knowledge it is open in general.

Conjecture 1.1.8. Let X be a hyper-Kähler manifold. Then

(i) The Beauville–Bogomolov form q̄ is even, i.e., q̄(x) is even for all x ∈ H2(X,Z).
(ii) The Fujiki constant cX is a positive integer.

We give a final remark that the Beauville–Bogomolov form and the Hodge–Riemann

bilinear form are not too different. The following discussion can be found in [Bea83b, Thm

5], but has not been emphasized enough since. Fix any Kähler class ω ∈ H2(X,R). Associated
to it we may define the Hodge–Riemann bilinear form and the primitive decomposition of

the cohomology

q̄ω : H2(X,R)⊗H2(X,R)→ R, x⊗ y 7→
∫
X
xyω2n−2∫
X
ω2n

,

H2(X,R) = H2
prim(X,R)⊕ ωH0(X,R).

(1.1.9)

Note that the primitive decomposition is orthogonal with respect to q̄ω.

Proposition 1.1.10. Let ω ∈ H2(X,R) be any Kähler class and consider the Hodge–

Riemann bilinear form and primitive decomposition in (1.1.9). Then

(i) The primitive decomposition is orthogonal with respect to the Beauville–Bogomolov

form q̄.

(ii) q̄ is precisely (2n− 1)q̄(ω) times q̄ω on H2
prim(X,R), and q̄(ω) times q̄ω on ωH0(X,R).

That is, the Beauville–Bogomolov form q̄ is essentially q̄ω on each components H2
prim(X,R)

and ωH0(X,R), but with different scaling factors.

Proof. Let x ∈ H2
prim(X,R) and s ∈ R. Apply the following lemma to x+ sω and ω in place

of x and y. We get the desired identity

q̄(x+ sω)

q̄(ω)
= (2n− 1)q̄ω(x) + q̄ω(sω).

Lemma 1.1.11. There exists an identity

q̄(x)

q̄(y)
= (2n− 1)

∫
X
x2y2n−2∫
X
y2n

− (2n− 2)

(∫
X
xy2n−1∫
X
y2n

)2

for x, y ∈ H2(X,Q).

Proof. Transform all the integrations on the right hand side to the Beauville–Bogomolov

forms, using the Fujiki relation (1.1.7).

8



Remark 1.1.12. The Kähler property of the class ω is only used to construct a primitive

decomposition of H2(X,R), i.e., it is used in the hard Lefscehtz property of ω. As we will

see in Chapter 2, the hard Lefschetz property holds for any cohomology class ω ∈ H2(X,Q)

with q̄(ω) ̸= 0, so Proposition 1.1.10 generalizes to any such ω.

The advantage of using the Beauville–Bogomolov form q̄ instead of q̄ω is that (1) it does

not depend on the choice of ω and is a topological invariant of X, and (2) it is defined over

Q (or Z). The Hodge–Riemann bilinear relation computes the signature of q̄ω, and thus the

signature of q̄.

Corollary 1.1.13. The signature of the Beauville–Bogomolov form q̄ is (3, b2(X)− 3).

1.1.2 Deformation of hyper-Kähler manifolds

A family of hyper-Kähler manifolds is a smooth proper morphism X → S over a complex

space (or a germ) S with hyper-Kähler manifold fibers. A deformation of X is a connected

family of hyper-Kähler manifolds whose fiber at a distinguished point 0 ∈ S is isomorphic

to X.

Definition 1.1.14. Let X and X ′ be hyper-Kähler manifolds. We call X and X ′ are

deformation equivalent if there exists a finite sequence of hyper-Kähler manifolds X =

X0, X1, · · · , Xk = X ′ such that each adjacent Xi and Xi+1 can be realized by two fibers

of a family of hyper-Kähler manifolds Xi → ∆ over a complex open disc.

Given a family of hyper-Kähler manifolds f : X → S over a simply connected base S,

one can associate a holomorphic map, called the (second) period map

Φ : S → D, t 7→ [H2,0(Xt)],

where the target D is the period domain of weight 2 Hodge structures with Hodge numbers

(1, b2(X)− 2, 1). More concretely, we can define1

D = {[Cσ] ∈ PH2(X,C)∨ : q̄(σ) = 0, q̄(σ + σ̄) > 0} ⊂ Pb2(X)−1.

The universal deformation of X is a family of hyper-Kähler manifolds X → Def(X) over

a germ Def(X) such that: for any family of hyper-Kähler manifolds XS → S over a germ

of a complex space, there exists a unique holomorphic map S → Def(X) realizing XS as a

1Throughout this article, the projectivization PE of a vector space (vector bundle) E is the set of 1-

dimensional quotients of E. Thus, PE∨ is the set of 1-dimensional subspaces of E.

9



pullback of X . Hyper-Kähler manifolds enjoy excellent deformation behaviors. The following

is the Tian–Todorov unobstructedness theorem together with [Bea83b].

Theorem 1.1.15 (Local Torelli theorem). Let X be a hyper-Kähler manifold. Then

(i) X admits a universal deformation X → Def(X) over a smooth germ Def(X) of di-

mension b2(X)− 2.

(ii) The period map Φ : Def(X) → D associated to the universal deformation is a local

isomorphism.

In fact, hyper-Kähler manifolds satisfy a much stronger theorem called the global Torelli

theorem, but we will not state this as it is not necessary for our future discussions. The

interested reader may consult [Ver13], [Huy12], [Mar11] and [BL18].

Besides the universal deformation, there is one more distinguished family of hyper-Kähler

manifolds of prime interest. Recall from Definition 1.1.2 a notion of a Riemannian hyper-

Kähler manifold (M, g).

Definition 1.1.16. The twistor family of a Riemannian hyper-Kähler manifold (M, g) is

a smooth proper morphism X → P1 of complex manifolds parametrizing the S2-family of

hyper-Kähler manifolds (M, I) in Proposition 1.1.3.

If one starts from our usual hyper-Kähler manifold X in Definition 1.1.1, for each Kähler

class ω ∈ H1,1(X,R) there exists an associated twistor family Xω → P1 containing X as a

special fiber. Note that the twistor family is a global family, meaning the base P1 is compact.

1.2 Lagrangian fibrations

Definition 1.2.1. Let X be a hyper-Kähler manifold of dimension 2n.

(i) A Lagrangian fibration of X to a normal base is a holomorphic surjective map π : X →
B with connected fibers to a normal complex space B with 0 < dimB < 2n.2

(ii) A Lagrangian fibration of X (to a smooth base) is a holomorphic surjective map π :

X → B with connected fibers to a complex manifold B with 0 < dimB < 2n.

A Lagrangian fibartion in this article will always mean a Lagrangian fibration to a smooth

base. We will often call π : X → B a Lagrangian fibered hyper-Kähler manifold for short.

By the surprising result of [Hwa08] and [GL14], the base B of any Lagrangian fibration will

automatically be a projective space.

2One may simplify the condition “π is surjective, π has connected fibers and B is normal” into π∗OX =

OB . See [Laz04, Ex 2.1.15].
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Theorem 1.2.2 (Hwang, Greb–Lehn). Let X be a hyper-Kähler manifold of dimension 2n

and π : X → B its Lagrangian fibration. Then B is isomorphic to Pn.

Proposition 1.2.3. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then π

is flat.

Proof. We will later see in Theorem 1.2.13 that π is equidimensional. The claim follows by

the miracle flatness theorem for holomorphic maps between complex manifolds (e.g., [Fis76,

§3.20]). In fact, π is flat if and only if B is smooth. See [HMa, Rmk 1.18] and [Mat89, Thm

23.7].

Some of our discussions in this article will depend on the fact that B is a projective

space. For example, our notion of a family of Lagrangian fibrations will assume the base

B is always Pn, and our proof of the deformation invariance of Aut◦(X/B) in §4.1 will

use Aut(B) = PGLn+1(C). In the end, we expect the base B will be always Pn, even for

Lagrangian fibrations to normal bases. This is the famous Conjecture 1.2.12, a generalization

of Theorem 1.2.2. We will later discuss the current status of the conjecture in §1.2.3.
The discriminant locus ∆ ⊂ B is the set of all points over which π has singular fibers. It

is a Zariski closed subset of pure codimension 1 in B by [HO09, Prop 3.1]. We will extensively

use its complement B0 = B\∆ and the restriction of the Lagrangian fibration to this smaller

base

π : X0 = π−1(B0)→ B0,

called the associated torus fibration of π. Indeed, it is a smooth proper family of complex

tori (abelian varieties) by Theorem 1.2.13.

Throughout the article, we denote by H the pullback of an ample line bundle and h its

cohomology class

H = π∗OB(1) : line bundle on X, h = c1(H) ∈ NS(X). (1.2.4)

The line bundle H and its cohomology class h will play an important role in our study of

Lagrangian fibered hyper-Kähler manifolds. For the future use, we define the divisibility of

h by a positive integer

div(h) = gcd{q̄(h, x) : x ∈ H2(X,Z)}. (1.2.5)

Lemma 1.2.6. The cohomology class h ∈ H2(X,Z) in (1.2.4) satisfies q̄(h) = 0.

Proof. Use the Fujiki relation
∫
X
h2n = (const.)q̄(h)n and h2n = 0 as h is pulled back from

B, which has dimension only n.

11



1.2.1 Rational sections and multisections

There are four different notion of sections we need to consider for Lagrangian fibered hyper-

Kähler manifolds: (1) sections, (2) multisections, (3) rational sections, and (4) rational mul-

tisections. One always needs to keep in mind that a Lagrangian fibration may or may not

admit these. The questions about existence / count of the various notion of sections can be

quite technical. For example, the set of rational sections of π is called the Mordell–Weil group

and has been an independent topic of interest. See [Huy16, §11.3] for the case of elliptic K3

surfaces, and [Ogu09b] or [Sac20, §5] for higher dimensional Lagrangian fibrations.

A precise relation between rational sections and sections (resp. rational multisections and

multisections) is unclear from the current literature. Our future discussions will only need

the notion of rational (multi)sections, so we provide the following two basic results on them.

Proposition 1.2.7. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then

the following are equivalent.

(i) X is projective.

(ii) There exists x ∈ NS(X) with q̄(x, h) ̸= 0.

(iii) π admits at least one rational multisection.

Proof. Set H = π∗OB(1) and h = c1(H) as in (1.2.4). If X is projective then any ample

class x ∈ NS(X) and a smooth fiber F satisfies
∫
F
(x|F )

n > 0. Use the Fujiki relation∫
F
(x|F )

n =
∫
X
xnhn = (const.)q̄(x, h)n to conclude q̄(x, h) ̸= 0 (in fact, one can further

prove it is positive). Conversely, assume there exists x ∈ NS(X) with q̄(x, h) ̸= 0. The

quadratic subspace Q{x, h} ⊂ NS(X)Q is the hyperbolic plane, so it contains an element

y with q̄(y) > 0. The projectiveness of X follows by Huybrechts’s projectiveness criterion

[Huy99, Huy03].

Again assume X is projective. Then π : X → B becomes an algebraic morphism. Over

any smooth point b ∈ B of π, there exists an étale local section of π [Sta, Tag 054L]. Its image

in X is the desired rational multisection of π. Conversely if π has a rational multisection,3

then Campana–Oguiso’s result in [Saw09, Lemma 2] claims X is projective.

The undefined locus of any rational section of π is of codimension ≥ 2 in B. However, it

is a priori unclear that the undefined locus is contained in the discriminant locus ∆.

Proposition 1.2.8. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then

any rational section of π is necessarily defined over the smooth locus B0 of π.
3Here rational multisection means a closed analytic subvariety S ⊂ X such that π induces a generically

finite morphism S → B.
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Proof. The hyper-Kähler manifold X is projective and the discussion becomes algebraic,

thanks to Proposition 1.2.7. Restrict the Lagrangian fibration to a torus fibration π : X0 =

π−1(B0)→ B0. Assume s : B0 99K X0 is a rational section of π undefined at least one point

in B0 and set B′
0 ⊂ X0 the closure of the image of s. The morphism π restricted to B′

0

defines a map f : B′
0 → B0, a projective birational morphism to a smooth base but not an

isomorphism.

By the classical Abhyankar lemma [Kol96, Thm VI.1.2], the exceptional locus of f is of

pure codimension 1 and ruled.4 We need to use its variant for our purpose, e.g., [Deb01, Prop

1.43]: there exists a rational curve on B′
0 that is contracted by f to a point b. This means

the fiber F = π−1(b), an abelian variety, contains a rational curve. Contradiction.

Remark 1.2.9. The same proof applies and yields the following more general result:

Let V → B0 be a morphism and assume V is smooth over C. Then any rational map

V 99K X0 over B0 is defined everywhere. For its proof, simply notice that the rational map

defines a rational section V 99K XV over V where XV = X0 ×B0 V . This is a generalization

of the result [BLR90, Cor 8.4.6] to any torsor of an abelian scheme.

One more corollary: any birational automorphism of π : X0 → B0 is an automorphism.

1.2.2 Deformation of Lagrangian fibrations

The notion of a family of Lagrangian fibered hyper-Kähler manifolds needs some care. Since

we are assuming the base of the Lagrangian fibration is always Pn, we can make its definition

quite intuitive.

Definition 1.2.10. A family of Lagrangian fibered hyper-Kähler manifolds is a commutative

diagram

X

B

S

π

p

q

with the following conditions.

(i) p : X → S is a smooth proper family of hyper-Kähler manifolds of relative dimension

2n over a complex space S.

(ii) q : B → S is the projectivization of a rank n+ 1 holomorphic vector bundle on S.

(iii) For all t ∈ S, the fiber π : Xt → Bt is a Lagrangian fibered hyper-Kähler manifold. In

other words, π∗OX = OB.

4Abhyankar’s lemma needs a smooth base B0.
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Note that the axiom (ii) claims more than simply saying B → S is a Pn-bundle. The

obstruction for a Pn-bundle to be the projectivization of a vector bundle lies in the analytic

Brauer group H2(S,O∗
S). Thus, if H

2(S,O∗
S) ̸= 0 then (ii) may be strictly stronger than

requiring B → S is a Pn-bundle.

If we have a family of hyper-Kähler manifolds as above, the pullback H = π∗OB/S(1) can

be considered as a flat family of line bundles Ht on Xt in (1.2.4). Therefore, Definition 1.2.10

in particular induces a family of pairs (X,H). Note also that there exists an isomorphism

B ∼= PS(p∗H). Conversely, one may start from a single Lagrangian fibered hyper-Kähler

manifold π : X → B with H = π∗OB(1). Consider a family of pairs (X,H), i.e., a family

of hyper-Kähler manifolds p : X → S with a line bundle H on X (flat over S). Does it

construct an associated family of Lagrangian fibered hyper-Kähler manifolds X → B → S

in the sense of Definition 1.2.10? This question turns out to be equivalent to the following

three conditions, which are quite delicate and not always satisfied:

(i) The direct image sheaf p∗H on S is locally free of rank n+ 1.

(ii) H is p-globally generated, i.e., the adjunction map p∗p∗H → H is surjective.

(iii) The induced map π : X → P(p∗H) over S is surjective and has connected fibers.

In other words, Definition 1.2.10 is stronger than the notion of a family of pairs (X,H)

by precisely the three conditions (i)–(iii). Matsushita in [Mat16] proved all the conditions

(i)–(iii) are automatically satisfied when S is a germ of a complex space ([Mat17] may be

further needed to handle (iii)). This is Theorem 1.2.11, which is a slight reformulation of

Matushita’s original result. We will revisit the three conditions above with more technical

details in the next subsection.

Two Lagrangian fibrations π : X → B and π′ : X ′ → B′ of hyper-Kähler manifolds are

called deformation equivalent if it connected with a finite sequence of families over complex

discs as in Definition 1.1.14. The universal deformation of π is a family of Lagrangian fibered

hyper-Kähler manifolds X → B → Def(X,H) over a germ such that: for any family of

Lagrangian fibered hyper-Kähler manifolds XS → BS → S over a germ S, there exists a

unique holomorphic map S → Def(X,H) realizing XS → BS as a pullback of X → B.
The existence of a universal deformation for a Lagrangian fibered hyper-Kähler manifold is

established by Matsushita.

Theorem 1.2.11 (Matsushita). Let π : X → B be a Lagrangian fibered hyper-Kähler man-

ifold. Set H = π∗OB(1) a line bundle on X and h ∈ H2(X,Z) its associated cohomology

class.

(i) There exists a universal deformation X → B → Def(X,H) of π : X → B over a
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smooth germ Def(X,H) of dimension b2(X)− 3.

(ii) The period map Φ : Def(X,H) → D maps Def(X,H) locally isomorphically into a

hyperplane D ∩ h⊥, where h⊥ = {[Cσ] ∈ PH2(X,C) : q̄(σ, h) = 0}.

As one can guess from the notation, the germ Def(X,H) coincides with the universal

deformation space of pairs (X,H). The existence of the universal deformation of pairs is

proved in [Bea83b, Cor 1].

1.2.3 Lagrangian fibration to a normal base

This subsection is devoted to summarizing the known facts about Lagrangian fibrations to

normal bases. The current status of this topic is quite delicate, so we need an extra care.

The story begins from a series of foundational papers [Mat99, Mat01, Mat00] of Matsushita,

where he observed any Lagrangian fibered hyper-Kähler manifold to a normal base has to

satisfy exceptionally rigid properties as if the base B is a projective space. Ultimately, we

expect the following conjecture to hold.

Conjecture 1.2.12. Let X be a hyper-Kähler manifold of dimension 2n and π : X → B its

Lagrangian fibration to a normal base. Then B is isomorphic to Pn.

Theorem 1.2.2 would thus be a special case of this conjecture when B is smooth. At

this point, the conjecture is not proved in its full generality. The following theorem collects

various partial progress made to this direction.

Theorem 1.2.13. Let X be a hyper-Kähler manifold of dimension 2n and π : X → B its

Lagrangian fibration to a normal base. Then

(i) B is a simply connected, Q-factorial, log terminal and projective Fano variety of di-

mension n.

(ii) Pic(B) = H2(B,Z) ∼= Z.

(iii) IHk(B,Q) = Hk(B,Q) ∼=

Q if k is even

0 if k is odd
.

(iv) Every smooth fiber of π is an abelian variety of dimension n.

(v) Every fiber of π is projective of pure dimension n and all its irreducible components

are Lagrangian subvarieties of X.

Remark 1.2.14. The statements and proofs of Theorem 1.2.13 are scattered in the litera-

ture. The primitive form of the theorem is first proved by Matsushita under an additional
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assumption that X and B are projective [Mat99, Mat01, Mat00]. Matsushita later in [Mat03]

dropped the projectiveness assumptions on X and B, but still assumed B to be Kähler. In

fact, he showed the Kähler condition on B implies the projectiveness of B. Amerik–Campana

[AC13, Thm 1, footnote 1] again dropped the Kähler condition on B by proving B is always

Kähler (hence always projective). See also [Mat16, Rmk 1.4].

The smooth fibers are well-known to be complex tori by the holomorphic Arnold–Liouville

theorem. Any fiber, smooth or not, is projective by [Leh16, Thm 1.1] or more generally

[Cam21]. Simple connectedness of B and the statement (ii) are proved in [HMa, Prop 1.6,

Rmk 1.15]. Finally, the statement (iii) is a combination of [SY22, Thm 0.4] together with

[HMa, Prop 1.10].

Theorem 1.2.13 gives strong evidence to Conjecture 1.2.12. In a different direction, the

conjecture is verified in many special cases. As mentioned, Theorem 1.2.2 can be interpreted

as a special case of the conjecture when B is smooth. Let us collect some other special cases

of the conjecture. The references for the following two theorems are [CMSB02, Thm 7.2],

[Ou19] and [HX20].

Theorem 1.2.15 (Cho–Miyaoka–Shepherd-Barron). If π admits at least one section then

Conjecture 1.2.12 holds.

Theorem 1.2.16 (Ou, Huybrechts–Xu). If dimX = 4 then Conjecture 1.2.12 holds.

The final special case for the conjecture is when X is one of the currently known de-

formation types of hyper-Kähler manifolds; these are K3[n], Kumn, OG10 and OG6-type

hyper-Kähler manifolds that will be defined in §1.3. The theorem should be well-known to

experts in the field; for example, it was stated in [Mat15, Thm 1.4] for K3[n] and Kumn-type

hyper-Kähler manifolds (but without a proof). We were not able to locate its written proof,

so the rest of this subsection will be devoted to collecting and documenting the proof of the

following theorem.

Theorem 1.2.17. If X is either of K3[n], Kumn, OG10 or OG6-type then Conjecture 1.2.12

holds.

The approach to the theorem requires a similar but separate conjecture about Lagrangian

fibrations. We start with the following definition, which can be found in, e.g., [Mar14, Def

1.2].

Definition 1.2.18. Let X be a hyper-Kähler manifold of dimension 2n and H a line bundle

on it. We say H defines a Lagrangian fibration of X if the following conditions are satisfied.
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(i) h0(X,H) = n+ 1.

(ii) H is globally generated.

(iii) The morphism π : X → |H|∨ ∼= Pn associated to the complete linear system of H is

surjective and has connected fibers. That is, it is a Lagrangian fibration of X.

In such a case, H is isomorphic to π∗OPn(1). Conversely, if we start from a Lagrangian

fibration π : X → Pn then H = π∗OPn(1) defines a Lagrangian fibration of X.

If H defines a Lagrangian fibration then it is clearly nef and isotropic (Lemma 1.2.6).

It is also expected to be primitive (see [KV19] or Theorem 1.2.23 below). The following

conjecture predicts the converse. It is often referred as the “SYZ conjecture for hyper-Kähler

manifolds” and has some variants.

Conjecture 1.2.19. Let X be a hyper-Kähler manifold and H a line bundle on it. If H is

primitive, nef and isotropic then H defines a Lagrangian fibration of X.

We prove the desired Theorem 1.2.17 in two steps. First we prove that Conjecture 1.2.19 is

stronger than Conjecture 1.2.12. Next we prove Conjecture 1.2.19 for all known deformation

types of hyper-Kähler manifolds.

Lemma 1.2.20. Conjecture 1.2.19 implies Conjecture 1.2.12.

Proof. Let π : X → B be a Lagrangian fibration of a hyper-Kähler manifold to a normal

base B. By Theorem 1.2.13, Pic(B) is generated by an ample line bundle OB(1). Consider

its pullback H = π∗OB(1). It is nef and isotropic (note that Lemma 1.2.6 does not use the

smoothness of B). It may not be a primitive line bundle, so let us assume H = dH ′ for d a

positive integer and H ′ a primitive nef isotropic line bundle on X.

If Conjecture 1.2.19 holds, then H ′ defines a Lagrangian fibration π′ : X → |H ′|∨ ∼= Pn.

In particular, H ′ is globally generated and so is H = dH ′. This implies OB(1) is a globally

generated line bundle on B. The complete linear system of H and OB(1) are identical due

to the identity π∗H = π∗π
∗OB(1) = OB(1). Hence we have a sequence of morphisms X

π−→
B

ϕ−→ |H|∨. On the other hand, H ′ has Iitaka dimension κ(X,H ′) = n and π′ has connected

fibers, so π′ becomes an Iitaka fibration (see [Laz04, Thm 2.1.27]). We correspondingly have

a Stein factorization X → |H ′|∨ ↪→ |H|∨ where the former map is the Lagrangian fibration

π′ and the latter map is the d-th Veronese embedding. The result is a commutative diagram

X B

|H ′|∨ |H|∨

π

π′ ϕ

νd

.
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We claim the morphism ϕ is finite. If so, then the uniqueness of the Stein factorization

of X → |H|∨ implies π = π′, ϕ = νd and B = |H ′|∨ ∼= Pn, proving our desired lemma.

Note that B is proper, so we only need to prove ϕ is quasi-finite, i.e., it has 0-dimensional

fibers.5 Assume on the contrary that ϕ has at least one fiber of dimension ≥ 1. Since π was

equidimensional of relative dimension n by Theorem 1.2.13, this means ϕ ◦ π has at least

one fiber of dimension ≥ n+ 1. But π′ was a Lagrangian fibration so every fiber of νd ◦ π′ is

either an empty set or of dimension n. Contradiction.

We next prove Conjecture 1.2.19 for all known deformation types of hyper-Kähler man-

ifolds. The following lemma, which is essentially proved in [Mat17], claims that Conjec-

ture 1.2.19 is invariant under deformations of a pair (X,H).

Lemma 1.2.21 (Matsushita). Let (X,H) and (X ′, H ′) be hyper-Kähler manifolds with prim-

itive nef isotropic line bundles on them. If (X,H) is deformation equivalent to (X ′, H ′), then

H defines a Lagrangian fibration of X if and only H ′ defines a Lagrangian fibration of X ′.

Proof. This result is essentially [Mat17, Thm 1.2]. The lemma in this form is stated in [Mar14,

Rmk 1.8] but without a proof. It is proved in the first paragraph of Theorem 7.2 in [MR21]

but in a different context of rational Lagrangian fibrations (a variant of Conjecture 1.2.19).

Starting from Mongardi–Rapagnetta’s version we can further argue as follows.

Assume H defines a Lagrangian fibration of X. By [MR21, Thm 7.2], we can say H ′

defines a rational Lagrangian fibration of X ′, i.e., there exists a composition

X ′ X ′′ Pnf π′′
,

where f is a birational map to another hyper-Kähler manifold X ′′ and H ′′ = f∗H
′ is a line

bundle defining a Lagrangian fibration π′′ of X ′′. Any birational map between hyper-Kähler

manifolds is isomorphic in codimension 1, so by Serre’s condition S2 (Hartog’s theorem)

we obtain h0(X ′, kH ′) = h0(X ′′, kH ′′) =
(
n+k
k

)
for all k ≥ 0. This implies H ′ defines a

Lagrangian fibration of X ′ by [Mat17, Lem 3.1].

The reader should be aware of a subtlety on the assumption of the lemma; the primi-

tiveness and isotropic property of a line bundle is invariant under deformations of (X,H).

However, the nefness of a line bundle is not deformation invariant, so one must assume both

H and H ′ are nef.

Theorem 1.2.22 (Markman, Matsushita, Mongardi–Rapagnetta, Mongardi–Onorati). If X

is either of K3[n], Kumn, OG10 or OG6-type then Conjecture 1.2.19 holds.

5A morphism is finite if and only if it is proper and quasi-finite.
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Proof. The theorem is proved for K3[n]-type in [Mar14, Thm 1.3, Rmk 1.8]. The same proof

can be applied to Kumn-types; any Lagrangian fibration of a Kumn-type hyper-Kähler man-

ifold can be deformed to the construction in Example 1.3.14 by [Wie18]. One then uses

Lemma 1.2.21 to conclude. The theorem for OG10 and OG6-type hyper-Kähler manifolds is

[MO22, Thm 2.2] and [MR21, Thm 7.2], respectively. Notice their results are about rational

Lagrangian fibrations, but we can again use [Mat17, Lem 3.1] as in the proof of Lemma 1.2.21

to conclude.

This completes the proof of Theorem 1.2.17. Incidentally during our argument, we have

also proved the following theorem. Let us explicitly document it.

Theorem 1.2.23. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. If X is

either of K3[n], Kumn, OG10 or OG6-type then the line bundle H = π∗OB(1) is primitive.

1.3 Some known examples of hyper-Kähler manifolds

and Lagrangian fibrations

At this point, there are essentially four types of known construction of hyper-Kähler mani-

folds. The first two constructions exist in every even dimension 2n and called the K3[n]-type

and Kumn-type. The latter two constructions only exist in dimension 10 and 6, respectively,

and called the OG10-type and OG6-type. The goal of this section is to collect some known

constructions of hyper-Kähler manifolds of such deformation types.

The most important topological invariants of such deformation types are already com-

puted. Before we get into their constructions/definitions, we collect their topological invari-

ants for reader’s convenience. The following is obtained in [Bea83b], [Rap07] and [Rap08].

Theorem 1.3.1 (Beauville, Rapagnetta). (i) The second Betti numbers of the currently

known types of hyper-Kähler manifolds are

b2(X) =



23 if X is of K3[n]-type,

24 if X is of OG10-type,

7 if X is of Kumn-type,

8 if X is of OG6-type.

(ii) The Beuaville–Bogomolov forms of the currently known types of hyper-Kähler manifolds
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are

(
H2(X,Z), q̄

) ∼=


U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2(n− 1)⟩ if X is of K3[n]-type,

U⊕3 ⊕ E8(−1)⊕2 ⊕ A2(−1) if X is of OG10-type,

U⊕3 ⊕ ⟨−2(n+ 1)⟩ if X is of Kumn-type,

U⊕3 ⊕ ⟨−2⟩⊕2 if X is of OG6-type.

(iii) The Fujiki constants of the currently known types of hyper-Kähler manifolds are

cX =


1 if X is of K3[n] or OG10-type,

n+ 1 if X is of Kumn-type,

4 if X is of OG6-type.

1.3.1 Some known constructions of hyper-Kähler manifolds

This subsection collects some of the known constructions of hyper-Kähler manifolds. Most

examples need highly nontrivial justifications and developed by several people. We will make

no attempt for their proofs but provide references. If there are multiple references, we will

give only one. Many of the examples below are also collected (with proofs) in [HL10].

Example 1.3.2 (Hilbert scheme of points on a K3 surface [Bea83b]).

Let S be a K3 surface, not necessarily projective. Consider the Hilbert scheme (or Douady

space) S[n] of n points on S. It is a hyper-Kähler manifold of dimension 2n. Any hyper-Kähler

manifold deformation equivalent to S[n] will be called a K3[n]-type hyper-Kähler manifold.■

Example 1.3.3 (Moduli of sheaves on a K3 surface [Muk84]).

Let S be a projective K3 surface and

v = (r, l, s) ∈ H∗(S,Z), r ∈ H0(X,Z), l ∈ NS(S), s ∈ H4(S,Z)

a primitive effective cohomology class with ⟨v, v⟩ = 2n−2 with respect to the Mukai pairing

⟨, ⟩. Consider the coarse moduli space X of stable coherent sheaves on S with Mukai vector

v, with respect to a fixed v-generic ample line bundle on S. Then X is a smooth projective

variety of dimension 2n and becomes a K3[n]-type hyper-Kähler manifold by [O’G97]. ■

Example 1.3.4 (Hilbert scheme of points on an abelian surface; generalized Kummer variety

[Bea83b]).

Let A be a 2-dimensional complex torus. Consider the Hilbert scheme A[n+1] of n + 1
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points on A, a smooth compact symplectic variety of dimension 2n+2. Its Albanese variety

becomes isomorphic to A, and its Albanese morphism

Alb : A[n+1] → A

becomes an étale trivial surjective fibration. Any fiber X of the fibration is a hyper-Kähler

manifold of dimension 2n, called the generalized Kummer variety. Any hyper-Kähler manifold

deformation equivalent to X is called a Kumn-type hyper-Kähler manifold. ■

Example 1.3.5 (Moduli of sheaves on an abelian surface [Yos01]).

Let A be an abelian surface and v = (r, l, s) ∈ H∗
even(A,Z) a primitive effective even

cohomology class with ⟨v, v⟩ = 2n + 2. Consider the moduli space M of stable coherent

sheaves on A with Mukai vector v, with respect to a fixed v-generic ample line bundle on A.

Then M becomes a smooth projective symplectic variety of dimension 2n+ 4. Its Albanese

variety is isomorphic to A× Ǎ, and its Albanese morphism

Alb : M → A× Ǎ

is an étale trivial surjective fibration. The fiber X of the Albanese fibration is a Kumn-type

hyper-Kähler manifold. ■

Example 1.3.6 (Singular moduli of sheaves on a K3 surface; O’Grady’s 10-dimensional

example [O’G99]).

Let S be a projective K3 surface and v ∈ H∗(S,Z) a primitive effective cohomology class

with ⟨v, v⟩ = 2. Consider the moduli space X̄ of stable coherent sheaves on S with Mukai

vector 2v, with respect to a v-generic ample line bundle on S. It is an irreducible projective

symplectic variety of dimension 10, singular along a codimension 2 irreducible subvariety

X̄sing (isomorphic to the symmetric product of the moduli of sheaves on S with Mukai vector

v). A single blowup along X̄sing ⊂ X̄ will symplectically resolve X̄ and yield a 10-dimensional

hyper-Kähler manifold X. Any hyper-Kähler manifold deformation equivalent to X is called

an OG10-type hyper-Kähler manifold. See [LS06, KLS06] for details. ■

Example 1.3.7 (Singular moduli of sheaves on an abelian surface; O’Grady’s 6-dimensional

example [O’G03]).

Let A be an abelian surface and v ∈ H∗
even(A,Z) a primitive effective cohomology class

with ⟨v, v⟩ = 2. Consider the moduli space M̄ of stable coherent sheaves on S with Mukai

vector 2v, with respect to a v-generic ample line bundle on A. It is again a projective symplec-

tic variety of dimension 10, singular along a codimension 2 irreducible subvariety. Blowing
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up the singular locus will again symplectically resolve M̄ and yield a smooth projective

symplectic variety M . The Albanese fibration of M becomes

Alb : M → M̄ → A× Ǎ,

an étale trivial surjective fibration. Its fiber is a hyper-Kähler manifold X of dimension 6.

Any hyper-Kähler manifold deformation equivalent to X is called an OG6-type hyper-Kähler

manifold. ■

Example 1.3.8 (Fano variety of lines on a cubic fourfold [BD85]).

Let Y be a smooth cubic fourfold in P5. The Fano variety of lines on Y becomes a

hyper-Kähler fourfold of K3[2]-type. ■

Example 1.3.9 (Twisted cubics on a cubic fourfold; LLSvS eightfold [LLSvS17]).

Let Y be a smooth cubic fourfold in P5 not containing any plane. Consider the Fano

variety M of twisted cubics contained in Y . The variety M is smooth projective, and in fact

a P2-bundle over an 8-dimensional smooth projective variety X̃. This space X̃ turns out to

be a blowup of a hyper-Kähler eightfold X along a smooth subvariety isomorphic to the

original Y . It is shown in [AL17] that X is of K3[4]-type. ■

1.3.2 Some known constructions of Lagrangian fibrations

Example 1.3.10 (Hilbert scheme of points on an elliptic K3 surface).

Apply the construction in Example 1.3.2 to an elliptic K3 surface f : S → P1. Then the

composition π : S[n] → S(n) → (P1)(n) of the Hilbert–Chow morphism and the symmetric

power of f becomes a Lagrangian fibration of S[n]. Note that the base (P1)(n) is isomorphic

to Pn. Also, the fiber of π at a general point b = (b1, · · · , bn) ∈ (P1)(n) is

π−1(b) = Sb1 × · · · × Sbn , Sbi = f−1(bi),

a product of n elliptic curves, which is a principally polarizable abelian variety of dimension

n. ■

Example 1.3.11 (Moduli of torsion sheaves on a K3 surface [Mar14, Ex 3.1]).

Apply the construction in Example 1.3.3 to the Mukai vector v = (0, l, s), where l is

an ample class with
∫
S
l2 = 2n − 2. Any closed point [F ] ∈ X is a torsion coherent sheaf

whose cohomological first Chern class is l. Let L ∈ Pic(S) = NS(S) be a unique line bundle

associated to l. We can consider the (Fitting) support map

π : X → |L|, [F ] 7→ [Fitt0(F )],
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This is a Lagrangian fibration of a K3[n]-type hyper-Kähler manifold X.

Consider a Zariski open set B0 ⊂ |L| parametrizing smooth curves C on S, and the

smooth projective universal family of C → B0 over it. The smooth (abelian variety) fibers

of π consist of the relative Jacobian PicmC/B0
→ B0 for m = s + n − 1. In particular, every

smooth fiber of π is the Jacobian of a curve, meaning they are principally polarizable. ■

Example 1.3.12 (Compactified relative Picard scheme of a degree 2 K3 surface [Mar95]).

Let f : S → P2 be a degree 2 K3 surface branched over a smooth sextic D ⊂ P2. Consider

the universal family of lines P2 ← L → (P2)∨ on P2. The fiber product C = L×P2 S mapped

into (P2)∨ models the family of degree 2 cyclic coverings of lines in P2 branched along D. A

generic curve C in this family is a genus 2 hyperelliptic curve. If we assume any C in this

family has at worst nodes or cusps, then the compactified relative Jacobian of C → (P2)∨

exists and becomes a Lagrangian fibered hyper-Kähler fourfold of K3[2]-type. ■

Example 1.3.13 (Hilbert scheme of points on a non-simple abelian surface [Mat15, §2]).
Let f : A → E be a surjective homomorphism from an abelian surface A to an elliptic

curve E. Apply the construction in Example 1.3.4 to A and form a commutative diagram

A[n+1] A

E(n+1) E

g f ,

where the horizontal maps are summation maps and the vertical map g is induced from f .

Both horizontal maps are isotrivial; the first row is an étale trivial (Albanese) fiber bundle,

and the second row is a Zariski locally trivial Pn-bundle. The induced map between their

fibers is a map π : X → Pn, where X is a generalized Kummer variety of dimension 2n.

To compute the fibers of π, consider the kernel E ′ = ker f . One can show the fiber of

g : A[n+1] → E(n+1) over a general point b = (b1, · · · , bn+1) ∈ E(n+1) is isomorphic to (E ′)n+1.

The fiber F = π−1(b) of the Lagrangian fibration sits in a short exact sequence

0 F (E ′)n+1 E ′ 0s ,

where the map s is the summation map. Computation shows the polarization type of F is

(1, · · · , 1, n+ 1). ■

Example 1.3.14 (Moduli of torsion sheaves on an abelian surface [Yos01] [Wie18]).

Apply the construction in Example 1.3.5 to the Mukai vector v = (0, l, s), where l is

an ample class with
∫
A
l2 = 2n + 2. Any closed point [F ] ∈ M is a torsion coherent sheaf

whose cohomological first Chern class is l. Contrary to Example 1.3.11, there are PiclA
∼= Ǎ
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choices of line bundles with associated cohomology class l. The support map in this situation

correspondingly becomes

Supp : M → P, [F ] 7→ [Fitt0 F ],

where P is a Zariski locally trivial Pn-bundle over Ǎ. The Albanese fibration factors into

M

A× P

A× Ǎ

Alb .

This is a family of Lagrangian fibered hyper-Kähler manifolds. Its fiber is a Lagrangian

fibration of a Kumn-type hyper-Kähler manifold. The fibers of the Lagrangian fibrations have

the polarization type (1, · · · , 1, d, n+1
d
). Here d is an integer measuring the non-primitiveness

of the ample class l, i.e., l = dl′ for a primitive ample class l′. ■

Example 1.3.15 (Compactified intermediate Jacobian of a cubic fourfold [LSV17]).

Let Y ⊂ P5 be a smooth cubic fourfold. Consider the universal family of hyperplanes

P5 ← L → (P5)∨. The fiber product C = L ×P5 Y mapped into (P5)∨ models the family

of hyperplane sections of Y . Over a Zariski open set U ⊂ (P5)∨ parametrizing hyperplanes

that intersect with Y transversally, the fiber C is a smooth cubic threefold. The associated

relative intermediate Jacobian is an abelian scheme J → U of relative dimension 5. There

exists a smooth projective compactification X → (P5)∨ of it, where X is a hyper-Kähler

manifold of OG10-type. ■
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Chapter 2

The Looijenga–Lunts–Verbitsky

structure on the cohomology

Introduction

Cohomology of hyper-Kähler manifolds enjoys an exceptional amount of symmetries, well

capturing its surface-like behaviors. Its symmetry is captured by a Lie algebra (or algebraic

group) acting on the cohomology. Verbitsky [Ver95] and independently Looijenga–Lunts

[LL97] attached a Q-Lie algebra g = g(X) to any hyper-Kähler manifold X, naturally

acting on its rational cohomology H∗(X,Q). We call g the Looijenga–Lunts–Verbitsky (LLV)

algebra, and the g-module structure on H∗(X,Q) the LLV structure. They are topological

invariants of X.

The main result of this chapter is collected in §2.2, where we explicitly compute the

LLV structure for all currently known deformation types of hyper-Kähler manifolds. Such

a computation can be extremely useful to compute other structures on the cohomology

of hyper-Kähler manifolds. As an example, we show how LLV structure can be used to

compute the Hodge structure of H∗(X,Q). In particular, one can compute the Hodge classes

on any even cohomology of hyper-Kähler manifolds. We provide some explicit examples to

demonstrate this computation.

We give two applications of the LLV decomposition. The first is a positive answer to

the conjecture of Nagai for all deformation types of hyper-Kähler manifolds. The second

is an upper bound on the second Betti number of hyper-Kähler manifolds. It depends on

Conjecture 2.5.1, which we believe should be of independent interest. The results in this

chapter are joint work with Mark Green, Radu Laza and Colleen Robles [GKLR] [KL20].
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2.1 The LLV structure

2.1.1 Definition of the LLV algebra

Let Y be a compact Kähler manifold of dimension m. We review the original definition of

Looijenga–Lunts and Verbitsky’s Lie algebra g attached to Y . Let x ∈ H1,1(Y,R) be a Kähler

class and consider two operators acting on the cohomology

h : H∗(Y,Q)→ H∗(Y,Q), ξ 7→ (k − dimY )ξ on Hk(Y,Q),

Lx : H∗(Y,R)→ H∗(Y,R), ξ 7→ x · ξ.
(2.1.1)

The operators h and Lx are called the degree operator and the Lefschetz operator, respec-

tively. The hard Lefschetz theorem proves there exists a unique operator Λx on H∗(Y,R)
making {h, Lx,Λx} an sl2-triple in gl(H∗(Y,R)).

Looijenga–Lunts in [LL97] observed that the existence of a (unique) operator Λx com-

pleting {h, Lx,Λx} an sl2-triple is a Zariski open property on x ∈ H2(Y,Q) by the Jacobson–

Morozov lemma. If Y is Kähler then the classical hard Lefschetz theorem guarantees at lest

one x ∈ H2(Y,R) with an associated sl2-triple, so almost all x ∈ H2(Y,Q) must automati-

cally admit their associated sl2-triples. Collecting all of them will generate a semisimple Lie

subalgebra of gl(H∗(Y,Q)).

Theorem-Definition 2.1.2 (Looijenga–Lunts). Let Y be a compact Kähler manifold. The

total Lie algebra g of Y is defined to be the Lie subalgebra of gl(H∗(Y,Q)) generated by all

possible Lefschetz sl2-triples {Lx, h,Λx} for x ∈ H2(Y,Q). It is a semisimple Lie algebra over

Q and is a topological invariant on Y .

Let us now assume X is a hyper-Kähler manifold. Throughout, we will use the following

two quadratic spaces associated to it

(V̄ , q̄) =
(
H2(X,Q), Beauville–Bogomolov form

)
,

(V, q) = (V̄ , q̄)⊕ (Q2, ( 0 1
1 0 )).

(2.1.3)

The following theorem was proved by Verbistky [Ver95] and Looijenga–Lunts [LL97] over

R. The result is strengthened to Q in [GKLR], using results in more extensive studies of

cohomology of hyper-Kähler manifolds in [KSV19]. We also note that [KSV19, Cor 3.13]

deduced that the inverse Lefschetz operator Λx exists for x ∈ H2(X,Q) if and only if q̄(x) ̸= 0.

Theorem-Definition 2.1.4 (Looijenga–Lunts, Verbitsky). Let X be a hyper-Kähler mani-

fold. Then its total Lie algebra is isomorphic to

g ∼= so(V, q).
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To emphasize their contribution, we call g the Looijenga–Lunts–Verbitsky (LLV) algebra.

The canonical g-module structure on H∗(X,Q) is called the LLV structure.

Base changing over R, the Lie algebra gR becomes isomorphic to so(4, b2(X)−2) because

real quadratic spaces are classified by their signature up to isomorphism. Over C, the Lie

algebra gC is isomorphic to so(b2(X) + 2,C). We note that quadratic spaces over Q are not

classified by their signature, so the best we can say is g ∼= so(V, q).

The LLV algebra g itself can be considered as a g-module under the adjoint action. The

semisimple degree operator h ∈ g induces an eigenspace decomposition of g. In the case of

hyper-Kähler manifolds, only degrees 2, 0, and −2 occur:

g = g2 ⊕ g0 ⊕ g−2.

The 0-eigenspace g0 is a reductive subalgebra of g, which can be decomposed further as

g0 = ḡ⊕Qh, ḡ = [g0, g0] : semisimple part, Qh = z(g0) : center.

We call ḡ the reduced LLV algebra of X. It is isomorphic to

ḡ ∼= so(V̄ , q̄).

Since ḡ ⊂ g0 consists of degree 0 operators, the induced ḡ-action on H∗(X) preserves

the degree. That is, each Hk(X,Q) admits a ḡ-module structure. The second cohomology

H2(X,Q) = V̄ becomes a standard ḡ-module.

2.1.2 The LLV decomposition

The LLV structure is a g-module structure on H∗(X,Q). Since g ∼= so(V, q) is simple, we

can formally consider its irreducible g-module decomposition

H∗(X,Q) ∼=
⊕
λ

mλVλ. (2.1.5)

Here λ is a dominant weight of gC, Vλ is an irreducible g-module of highest weight λ (however,

see the remark below) and mλ is its multiplicity. We provide Appendix A to summarize

representation theory facts of the Lie algebra g and our notation for it. The isomorphism

(2.1.5) will be called the LLV decomposition of the cohomology of X. It is a topological

invariant of a hyper-Kähler manifold.

Remark 2.1.6. We address two technical subtleties of the expression (2.1.5).
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(i) The g-module isomorphism (2.1.5) is noncanonical. However, the component mλVλ for

each λ is canonically defined as a submodule of H∗(X,Q). It is called the λ-isotypic

component.

(ii) Irreducible g-modules over Q are not always classified by dominant weights λ (see

Appendix A). Hence, strictly speaking, using the notation Vλ in (2.1.5) is incorrect.

What is correct instead is that we have a decomposition H∗(X,C) ∼=
⊕

mλVλ,C of

the complex cohomology. This subtlety is not clearly addressed in the original paper

[GKLR]. However, we claim that at least for the known deformation types of hyper-

Kähler manifolds, (2.1.5) makes sense as it is over Q.

If X is of K3[n]-type then X does not have any odd cohomology. Hence every

irreducible g-module contained in H∗(X,Q) is absolutely irreducible and classified by

dominant weights by Proposition A.1.2 (note that b2(X) = 23 is odd). This proves

we can use (2.1.5) over Q. If X is of Kumn-type then the quadratic space (V, q) is

isomorphic to

(V, q) ∼= U⊕4 ⊕ ⟨−2(n+ 1)⟩,

which has a maximal Witt index 4. The special orthogonal Lie algebra g ∼= so(V, q)

correspondingly becomes a split simple Lie algebra and every irreducible g-module

is absolutely irreducible, whence classified by dominant weights λ. See, e.g., [Mil17,

§24.j]. Finally, if X is of OG10 or OG6-type then we first need to show the main result

Theorem 2.2.6 over C. But then one can notice every irreducible g-modules arising in

the theorem is defined over Q by Proposition A.1.2 and A.1.3, so the result can be

strengthened into Q and becomes the form (2.1.5).

Set b2(X) = dim V̄ and r = ⌊1
2
b2(X)⌋. The LLV algebra g ∼= so(V, q) is a simple Lie

algebra of type Br+1 orDr+1 depending on the parity of b2(X). Either case, dominant weights

λ can be expressed as a tuple λ = (λ0, · · · , λr) of certain half-integers λ0, · · · , λr. We will

typically drop the 0’s at the end of this tuple for simplicity. For example, the dominant weight

λ = (1, 0, · · · , 0) will be simply written as (1), and V(1) = V is the standard representation

of g. Again see Appendix A for more details. The following was observed in [Ver96] and

[Bog96].

Theorem-Definition 2.1.7 (Verbitsky). The LLV decomposition (2.1.5) always contains

the irreducible component V(n) with multiplicity m(n) = 1. We call this the Verbitsky compo-

nent of H∗(X,Q).

The Verbitsky component should be considered as a primary component of the cohomol-

ogy of hyper-Kähler manifolds. We will see in §2.2 that there can be many more complicated
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Vλ’s occurring in the LLV decomposition (2.1.5)

2.1.3 LLV structure and the Hodge structure

The LLV structure may be of interest because (1) it is a topological invariant on X, and

(2) it is “stronger” than all known structures on the cohomology of hyper-Kähler manifolds.

We will see in this and the following subsection how the LLV structure dominates the other

structures on the cohomology of hyper-Kähler manifolds. We start with discussing the Hodge

structure.

Every discussion so far was topological, whereas the Hodge structure on the cohomology

certainly depends on the complex structure ofX. Let us consider a new operator that depends

on the complex structure

f : H∗(X,R)→ H∗(X,R), ξ 7→ (q − p)
√
−1ξ on Hp,q(X). (2.1.8)

Note that f determines the Hodge structure on each Hk(X,Q) by its eigenspace decompo-

sition. The k-th cohomology Hk(X,Q) itself is determined by the eigenspace decomposition

of the degree operator h on H∗(X,Q) defined in (2.1.1). Therefore, the study of the two

operators f and h is enough to understand the Hodge structure of H∗(X,Q). It is immediate

from the definition that h is a semisimple element in g (or even g0). The operator f is also

a semisimple element in the LLV algebra ([GKLR, Prop 2.24]):

Lemma 2.1.9. The operator f in (2.1.8) is a semisimple element in ḡR.

Therefore, the Lie algebra g ⊂ gl(H∗(X,Q)) contains the entire information of the Hodge

structure of H∗(X,Q). Put differently, the g-module structure on H∗(X,Q) determines the

Hodge structure of H∗(X,Q). The precise way of deducing the Hodge decomposition from a

g-weight decomposition is presented in [GKLR, §2.2.1], but we will not copy it here. A more

theoretical interpretation of this fact is a comparison of the Mumford–Tate group (algebra)

and the LLV algebra of H∗(X,Q).

Definition 2.1.10. The special Mumford–Tate algebra mt ofH∗(X,Q) is a minimal algebraic

Lie subalgebra of gl(H∗(X,Q)) that contains f ∈ gl(H∗(X,R)) after base change over R.
The Mumford–Tate algebra of H∗(X,Q) is simply a Lie subalgebra mt0 = mt ⊕ Qh of

gl(H∗(X,Q)).

There is a general notion of a (special) Mumford–Tate algebra associated to any pure

Hodge structure, the associated Lie algebra of its (special) Mumford–Tate group. See [Moo99],
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[Zar83] or [GKLR, §2.3]. The following proposition provides an important viewpoint to

the study of the LLV algebra; one may think of the degree 0 part of the LLV algebra g0

(resp. reduced LLV algebra ḡ) as the generic Mumford–Tate algebra (resp. generic special

Mumford–Tate algebra) of the universal deformation X → Def(X) of X. In particular, the

LLV algebra always contains the Mumford–Tate algebra, meaning it defines a more rigid

structure on H∗(X,Q) compared to the Hodge structure. See [GKLR, Prop 2.38].

Proposition 2.1.11. Let mt be the special Mumford–Tate algebra of H∗(X,Q).

(i) There exists an inclusion mt ⊂ ḡ, and the equality holds for a very general X.

(ii) Assume 0 < k < 4n and Hk(X,Q) ̸= 0. Then the special Mumford–Tate algebra

of Hk(X,Q) is isomorphic to mt. In particular, the special Mumford–Tate algebra of

H2(X,Q) is isomorphic to mt.

Finally, we would also like to mention that the special Mumford–Tate Lie algebra (group)

of any projective hyper-Kähler manifold is classified. This is a result of [Zar83].1 We can use

Proposition 2.1.11 to translate this result to the classification of the special Mumford–Tate

algebra of any projective hyper-Kähler manifold.

Theorem 2.1.12 (Zarhin). Let X be a projective hyper-Kähler manifold. Let T be the tran-

scendental Hodge structure of H2(X,Q) and K = EndHS(T ) its endomorphism algebra over

Q. Then

(i) K is either a totally real number field or a CM number field.

(ii) The special Mumford–Tate algebra mt of X is isomorphic to

mt ∼=

soK(T, qK) if K is a totally real number field

uK(T, qK) if K is CM number field
.

Here qK is a K-symmetric (or K-sesquilinear) bilinear form on T induced by the

Beauville–Bogomolov form q̄.

See [Zar83] or [Huy16, §3.3] for more details.

The following fact about the generic Mumford–Tate group is very useful. Its proof is an

easy application of the descriptions of Noether–Lefschetz loci via the period map. See, e.g.,

[GGK12].

1Zarhin’s result was stated in terms of the second cohomology of projective K3 surfaces, but his method

applies to any polarizable weight 2 pure Hodge structures of K3 type.
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Proposition 2.1.13. (i) If X is a very general hyper-Kähler manifold, then mt ∼= so(V̄ , q̄).

(ii) It X is a very general polarized hyper-Kähler manifold with T ⊂ H2(X,Q) the orthog-

onal complement of the polarization, then mt ∼= so(T, q̄).

2.1.4 LLV structure and other structures

Let us briefly mention some other structures on H∗(X,Q) and their relations to the LLV

structure. First, Looijenga–Lunts also defined another Lie algebra generated only by the

algebraic classes x ∈ NS(X)Q. It defines a Q-Lie algebra gNS ⊂ gl(H∗(X,Q)), which turns

out to be isomorphic to the special orthogonal Lie algebra of the quadratic space (NS(X)Q, q̄).

We clearly have an inclusion of Lie algebras gNS ⊂ g. Hence the g-module structure on

H∗(X,Q) is always more rigid than the gNS-module structure on it.

Another interesting Lie algebra is an R-Lie algebra gg attached to each hyper-Kähler

metric g on X [Fuj87] [Ver90]. The Lie algebra gg is generated by the Lefschetz / inverse

Lefschetz operators associated to all S2-family of Kähler classes ω = g(I−,−) of the hyper-

Käher metric g in Proposition 1.1.3. It becomes isomorphic to so(4, 1). Again we have gg ⊂
gR. Its reduced part ḡg is isomorphic to so(3). Thus the corresponding simply connected Lie

group Spin(3) acts on each cohomology Hk(X,R). This action is often referred to an SU(2)-

action or an Sp(1)-action, because we have an accidental isomorphism Spin(3) ∼= SU(2) ∼=
Sp(1) of the compact real forms of the type B1 = A1 = C1 simple Lie groups.

2.2 Computing the LLV structures for known defor-

mation types

This section states explicit computations for the LLV structure of all currently known de-

formation types of hyper-Kähler manifolds. The following results are proved in [GKLR],

which is joint work with Mark Green, Radu Laza and Colleen Robles. The statements were

stated over R in the original paper but the arguments prove the statements over Q. See

Remark 2.1.6.

Theorem 2.2.1. The generating series for the formal characters of K3[n]-type hyper-Kähler

manifolds is

∞∑
n=1

ch
(
H∗(K3[n],C)

)
qn =

∞∏
m=1

1∏11
i=0(1− xiqm)(1− x−1

i qm)
.
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The equality in the theorem is taken in the formal power series ring A[[q]], where

A = Z[x±1
0 , · · · , x±1

11 , (x0 · · ·x11)
1
2 ]W25

is the representation ring of the type B12 simple Lie algebra so(25,C). One can convert this

formal character computation into an irreducible decomposition (with the aid of computer).

The first few computations are listed in the following corollary for reader’s convenience.

Corollary 2.2.2. The LLV decompositions of some low-dimensional K3[n]-type hyper-Kähler

manifolds are as follows:

H∗(K3[2],Q) ∼= V(2),

H∗(K3[3],Q) ∼= V(3) ⊕ V(1,1),

H∗(K3[4],Q) ∼= V(4) ⊕ V(2,1) ⊕ V(2) ⊕Q,

H∗(K3[5],Q) ∼= V(5) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,1) ⊕ V(1,1) ⊕ V,

H∗(K3[6],Q) ∼= V(6) ⊕ V(4,1) ⊕ V(4) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,2) ⊕ V(2,1) ⊕ 2V(2) ⊕ V(1,1,1) ⊕ V ⊕Q,

H∗(K3[7],Q) ∼= V(7) ⊕ V(5,1) ⊕ V(5) ⊕ V(4,1) ⊕ V(4) ⊕ V(3,2) ⊕ 2V(3,1) ⊕ 2V(3) ⊕ V(2,1,1),

⊕ V(2,1)
⊕2 ⊕ V(2) ⊕ 2V(1,1) ⊕ 2V.

A similar result for Kumn-type hyper-Kähler manifolds is slightly more involved. In fact,

the intriguing coefficients in the formulas for the Kumn-type suggests that there should be

a better way to formulate the result. We plan to address this issue in our future work with

Mirko Mauri. To state the result, let us first define a formal power series

B(q) =
∞∏

m=1

∏
j(1 + xj0

0 x
j1
1 x

j2
2 x

j3
3 q

m)∏3
i=0(1− xiqm)(1− x−1

i qm)
· · · , (2.2.3)

where j = (j0, · · · , j3) ∈ {−1
2
, 1
2
}×4 runs through all the eight 4-tuples satisfying j0+· · ·+j3 ∈

2Z. Given a positive integer d, we define its fourth Jordan totient value by

J4(d) = d4 ·
∏
p|d

(
1− 1

p4

)
,

where p runs through all the prime factors of d.

Theorem 2.2.4. The generating series for the formal characters of Kumn-type hyper-Kähler

manifolds is
∞∑
n=1

ch
(
H∗(Kumn,C)

)
qn =

∞∑
d=1

J4(d) ·
B(qd)− 1

b1q
.

Here B(q) is defined in (2.2.3), b1 is the degree 1 coefficient of B(q), and J4(d) is the fourth

Jordan totient value of d.
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The equality in the theorem again is taken in the formal power series ring A[[q]], where

A = Z[x±1
0 , · · · , x±1

3 , (x0 · · ·x3)
1
2 ]W9

is the representation ring of the type B4 simple Lie algebra so(9,C). The computations of

the LLV decompositions are the following.

Corollary 2.2.5. The LLV decompositions of some low-dimensional Kumn-type hyper-Kähler

manifolds are as follows:

H∗(Kum2,Q) ∼= V(2) ⊕ 80Q ⊕ V( 1
2
, 1
2
, 1
2
, 1
2
)

H∗(Kum3,Q) ∼= V(3) ⊕ V(1,1) ⊕ 16V ⊕ 240Q ⊕ V( 3
2
, 1
2
, 1
2
, 1
2
)

H∗(Kum4,Q) ∼= V(4) ⊕ V(2,1) ⊕ V(2) ⊕ V(1,1,1) ⊕ V(1,1) ⊕ 625Q ⊕ V( 5
2
, 1
2
, 1
2
, 1
2
) ⊕ V( 3

2
, 1
2
, 1
2
, 1
2
) ⊕ V( 1

2
, 1
2
, 1
2
, 1
2
)

H∗(Kum5,Q) ∼= V(5) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,1,1) ⊕ 2V(2,1) ⊕ 16V(2) ⊕ V(1,1,1,1) ⊕ V(1,1) ⊕ 82V

⊕ 1200Q ⊕ V( 7
2
, 1
2
, 1
2
, 1
2
) ⊕ V( 5

2
, 1
2
, 1
2
, 1
2
) ⊕ V( 3

2
, 3
2
, 1
2
, 1
2
) ⊕ 2V( 3

2
, 1
2
, 1
2
, 1
2
) ⊕ 17V( 1

2
, 1
2
, 1
2
, 1
2
)

O’Grady’s two sporadic examples are addressed separately in the following theorem.

Theorem 2.2.6. The LLV decompositions of the OG10 and OG6-type hyper-Kähler mani-

folds are

H∗(OG10,Q) ∼= V(5) ⊕ V(2,2), H∗(OG6,Q) ∼= V(3) ⊕ V(1,1,1) ⊕ 135V ⊕ 240Q.

We only present the proof for the K3[n]-case and refer the remaining proofs to the original

article [GKLR]. In fact, proof for the Kumn-case is essentially the same but only combi-

natorially more involved. The proofs for OG10 and OG6-types need different approaches.

Additional inputs for their proofs are [dCRS21] and [MRS18].

2.2.1 The LLV structure of K3[n]

This subsection is entirely devoted to the proof of Theorem 2.2.1. Our starting point is the

result of [GS93] and [dCM00] for the computation of the Hodge structure of S[n] for any

compact Kähler surface S.

Theorem 2.2.7 (Göttsche–Soergel, de Cataldo–Migliorini). Let S be a compact Kähler

surface. Then there exists a Hodge structure isomorphism

H∗(S[n],Q) =
⊕
α⊢n

[
n⊗

i=1

Symai H∗(S,Q)
( n∑

i=1

ai − n
)]

, (2.2.8)

where α = (1a1 , · · · , nan) runs through all partitions of n.
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Say S is a very general (non-projective) K3 surface. Its special Mumford–Tate algebra

and Mumford–Tate algebra are

m̄ = so(H2(S,Q), q̄S), m0 = m̄⊕Qh,

where q̄S is the intersection pairing of S. By (2.2.8), the Mumford–Tate algebra ofH∗(S[n],Q)

is also isomorphic to m0, and a posteriori the equality (2.2.8) becomes an m0-module iso-

morphism.

Consider the formal “Mukai completion” m of m0. It is a Lie algebra m = so(H∗(S,Q), qS)

containing m0 = m̄ ⊕ Qh by precisely the degree 0 part with respect to the h-eigenspace

decomposition:

m = m−2 ⊕m0 ⊕m2, m0 = m̄⊕Qh, m−2 = m2 = H2(S,Q).

The cohomology H∗(S,Q) becomes the standard m-module whose restriction to m0 induces

the original m0-module structure on it. Correspondingly the RHS of (2.2.8) admits a unique

m-module structure whose restriction to m0 recovers the original m0-module structure on

it. On the other hand, consider the LLV algebra g of the hyper-Kähler manifold S[n]. By

Proposition 2.1.11, we have an inclusion of Lie algebras

m ⊂ g = so
(
(H∗(S,Q), qS)⊕ ⟨−2(n− 1)⟩

)
.

As a result, the LHS of (2.2.8) also admits a unique m-module structure by restricting its

g-module structure, the LLV structure. By Lemma A.2.2, we can upgrade (2.2.8) to an

m-module isomorphism.

Finally, we are in a position to apply Lemma A.2.3. After base change over C, the LHS and

RHS of the equality admits a gC = so25(C) and mC = so24(C)-module structure, respectively.

The formal so24(C)-character of RHS is clearly∑
α⊢n

sa1 · · · san ,

where si denotes the formal character of the i-th symmetric power of H∗(S,Q). This becomes

the formal so25(C)-character of the LHS by Lemma A.2.3.

In conclusion, the generating series for the gC ∼= so25(C)-characters ofH∗(S[n],C) becomes

∞∑
n=0

ch
(
H∗(K3[n],C)

)
qn =

∞∑
n=0

∑
α⊢n

sa1sa2 · · · sanqa1+2a2+···+nan

=

(
∞∑

a1=0

sa1q
a1

)(
∞∑

a2=0

sa2q
2a2

)(
∞∑

a3=0

sa3q
3a3

)
· · · .
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Each factor simplifies into

∞∑
i=0

siq
i = 1 + (x0 + x1 + · · ·+ x−1

11 )q + (x2
0 + x0x1 + · · ·+ x−2

11 )q
2 + · · ·

=
11∏
i=0

(1 + xiq + x2
i q

2 + · · · )(1 + x−1
i q + x−2

i q2 + · · · ) =
11∏
i=0

1

(1− xiq)(1− x−1
i q)

.

This completes the proof of Theorem 2.2.1.

2.3 Computing the reduced LLV structures and Hodge

structures

The goal of this section is to present how one can use our main results in §2.2 to compute

the Hodge structure of a hyper-Kähler manifold. We present two illustrative examples. The

results in this section are not contained in [GKLR].

2.3.1 The reduced LLV structure

The reduced LLV structure on the k-th cohomology Hk(X,Q) is its ḡ-module structure. The

reduced LLV decomposition is a decomposition of a single degree cohomology into a direct

sum of irreducible ḡ-modules

Hk(X,Q) ∼=
⊕
λ̄

mλ̄V̄λ̄.

Here λ̄ indicates a dominant ḡ-weight and V̄λ̄ is an irreducible ḡ-module of highest weight λ̄.

The reduced LLV structure can be computed from the original LLV structure of H∗(X,Q)

by restriction of scalars. Recall from §2.1.1 that we had a Lie subalgebra g0 = ḡ⊕Qh of the

LLV algebra g. Hence the g-module structure on H∗(X,Q) induces a g0-module structure

on H∗(X,Q) by

ḡ⊕Qh = g0 ↪→ g→ gl(H∗(X,Q)).

The h-action is deciding the degree of the cohomology, and the ḡ-action is our desired reduced

LLV structure. The reduced LLV structure is a topological invariant.

From the results in §2.2, we can deduce the reduced LLV decompositions for known

deformation types of hyper-Kähler manifolds. Again the computations were done with the

aid of computer and we will make no justification for these.

Proposition 2.3.1. The reduced LLV decompositions of some low-dimensional K3[n]-type

hyper-Kähler manifolds are as follows.
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(i) H4(K3[2],Q) ∼= Sym2 V̄ .

(ii) H4(K3[3],Q) ∼= Sym2 V̄ ⊕ V̄ , H6(K3[3],Q) ∼= Sym3 V̄ ⊕
(
V̄(1,1) ⊕Q

)
.

(iii) H4(K3[4],Q) ∼= Sym2 V̄ ⊕ V̄ ⊕Q,

H6(K3[4],Q) ∼= Sym3 V̄ ⊕
(
V̄(2) ⊕ V̄(1,1) ⊕Q

)
⊕ V̄ ,

H8(K3[4],Q) ∼= Sym4 V̄ ⊕
(
V̄(2,1) ⊕ 2V̄

)
⊕
(
V̄(2) ⊕Q

)
⊕Q.

(iv) H4(K3[5],Q) ∼= Sym2 V̄ ⊕ V̄ ⊕Q,

H6(K3[5],Q) ∼= Sym3 V̄ ⊕
(
V̄(2) ⊕ V̄(1,1) ⊕Q

)
⊕ V̄ ⊕ V̄ ,

H8(K3[5],Q) ∼= Sym4 V̄ ⊕
(
V̄(3) ⊕ V̄(2,1) ⊕ 2V̄

)
⊕
(
V̄(2) ⊕Q

)
⊕
(
V̄(2) ⊕ V̄(1,1) ⊕Q

)
⊕ V̄ ⊕Q,

H10(K3[5],Q) ∼= Sym5 V̄ ⊕
(
V̄(3,1) ⊕ 2V̄(2) ⊕ V̄(1,1) ⊕Q

)
⊕
(
V̄(3) ⊕ V̄

)
⊕
(
V̄(2,1) ⊕ 2V̄

)
⊕
(
V̄(1,1) ⊕Q

)
⊕ V̄ .

The reduced LLV structure of H2n+k(X,Q) is isomorphic to that of H2n−k(X,Q). This is

why we only provided computations up to the middle degree cohomology. Expressions in a

single parenthesis mean they are from a single irreducible g-module component. For example,

recall from Theorem 2.2.1 that we had an LLV decomposition of a K3[4]-type hyper-Kähler

manifold

H∗(K3[4],Q) ∼= V(4) ⊕ V(2,1) ⊕ V(2) ⊕Q.

The results in the previous proposition is written in a way that, for example, the expression

in a single parenthesis
(
V̄(2)⊕ V̄(1,1)⊕Q

)
in H6(K3[4],Q) is coming from a single component

V(2,1).

Remark 2.3.2. Alternatively, for each integer k one can read off the coefficients of x
k/2
0 in

the generating series Theorem 2.2.1. This will give us the formal characters of the reduced

LLV structures H2n+k(K3[n],Q), and hence their irreducible decompositions. We were not

able to obtain a closed formula for the generating series of the reduced LLV structures.

Proposition 2.3.3. The reduced LLV decompositions of some low-dimensional Kumn-type

hyper-Kähler manifolds are as follows.

(i) H3(Kum2,Q) ∼= V̄( 1
2
, 1
2
, 1
2
), H4(Kum2,Q) ∼= Sym2 V̄ ⊕ 80Q.

(ii) H3(Kum3,Q) ∼= V̄( 1
2
, 1
2
, 1
2
), H4(Kum3,Q) ∼= Sym2 V̄ ⊕ V̄ ⊕ 16Q,

H5(Kum3,Q) ∼= V̄( 3
2
, 1
2
, 1
2
) ⊕ V̄( 1

2
, 1
2
, 1
2
),

H6(Kum3,Q) ∼= Sym3 V̄ ⊕
(
V̄(1,1) ⊕Q

)
⊕ 16V̄ ⊕ 240Q.

(iii) H3(Kum4,Q) ∼= V̄( 1
2
, 1
2
, 1
2
), H4(Kum4,Q) ∼= Sym2 V̄ ⊕ V̄ ⊕Q,

H5(Kum4,Q) ∼=
(
V̄( 3

2
, 1
2
, 1
2
) ⊕ V̄( 1

2
, 1
2
, 1
2
)

)
⊕ V̄( 1

2
, 1
2
, 1
2
),
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H6(Kum4,Q) ∼= Sym3 V̄ ⊕
(
V̄(2) ⊕ V̄(1,1) ⊕Q

)
⊕ V̄ ⊕ V̄(1,1) ⊕ V̄ ,

H7(Kum4,Q) ∼=
(
V̄( 5

2
, 1
2
, 1
2
) ⊕ V̄( 3

2
, 1
2
, 1
2
) ⊕ V̄( 1

2
, 1
2
, 1
2
)

)
⊕
(
V̄( 3

2
, 1
2
, 1
2
) ⊕ V̄( 1

2
, 1
2
, 1
2
)

)
⊕ V̄( 1

2
, 1
2
, 1
2
),

H8(Kum4,Q) ∼= Sym4 V̄ ⊕
(
V̄(2,1) ⊕ 2V̄

)
⊕
(
V̄(2) ⊕Q

)
⊕
(
V̄(1,1,1) ⊕ V̄

)
⊕
(
V̄(1,1) ⊕Q

)
⊕ 625Q.

Proposition 2.3.4. The reduced LLV decompositions of the OG10-type hyper-Kähler man-

ifolds are

H4(OG10,Q) ∼= Sym2 V̄ , H6(OG10,Q) ∼= Sym3 V̄ ⊕ V̄(2),

H8(OG10,Q) ∼= Sym4 V̄ ⊕ V̄(2,1) ⊕ V̄ , H10(OG10,Q) ∼= Sym5 V̄ ⊕ V̄(2,2) ⊕ V̄(2) ⊕ V̄(1,1) ⊕Q.

Proposition 2.3.5. The reduced LLV decompositions of the OG6-type hyper-Kähler mani-

folds are

H4(OG6,Q) ∼= Sym2 V̄ ⊕ V̄(1,1) ⊕ 135Q,

H6(OG6,Q) ∼= Sym3 V̄ ⊕
(
V̄(1,1,1) ⊕ V̄

)
⊕ 135V̄ ⊕ 240Q.

2.3.2 Computing the Hodge structures

The reduced LLV structure can be useful for computing the Hodge structure of a hyper-

Kähler manifold. From the results The results in §2.1.1 says the Mumford–Tate algebra mt0 =

mt ⊕ Qh is always a Lie subalgebra of g0, and thus the reduced LLV structure determines

the Hodge structure. In particular, all the reduced LLV decompositions computed in the

previous subsection are Hodge structure isomorphisms once you consider V̄ = H2(X,Q) as

the Hodge structure of the second cohomology of X.

If one wants to know the full irreducible decomposition of the Hodge structure ofHk(X,Q)

(e.g., when computing the Hodge cycles) then the reduced LLV decomposition needs to be

decomposed further. The goal of this subsection is to present two examples to show how

these discussions can give us an explicit computation of the Hodge structure of X.

Example 2.3.6 (K3[2]-type). Let X be a hyper-Kähler manifold of K3[2]-type. We have a

computation of its reduced LLV structure

H4(X,Q) ∼= Sym2 V̄ = V̄(2) ⊕Q, (2.3.7)

which in particular becomes a Hodge structure isomorphism if we consider V̄ = H2(X,Q)

as a Hodge structure.

Assume X is a very general non-projective hyper-Kähler manifold, so that the special

Mumford–Tate algebra is mt = ḡ ∼= so(V̄ , q̄) by Proposition 2.1.13. Then the ḡ-module
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decomposition (2.3.7) is the irreducible Hodge structure decomposition. In particular, there

are 1-dimensional Hodge cycles in H4(X,Q), generated by the Beauville–Bogomolov class.

Assume now X is a very general polarized hyper-Kähler manifold. The special Mumford–

Tate algebra is mt ∼= so(W, q̄) again by Proposition 2.1.13, and the irreducible Hodge struc-

ture decomposition of H2(X,Q) is V̄ = T ⊕ Q. The ḡ-module decomposition (2.3.7) corre-

spondingly is not an irreducible mt-module decomposition; its irreducible mt-module decom-

position becomes

H4(X,Q) ∼= Sym2(W ⊕Q) = W(2) ⊕W ⊕ 2Q.

In particular, the Hodge cycles in H4(X,Q) are 2-dimensional.

If we do not assume X is very general then one needs to understand the special Mumford–

Tate algebra mt of X to do similar computations. By Theorem 2.1.12, we can compute mt

and understand everything about the tensor construction of Hodge structures arising from

V̄ . If we have K = Q in the theorem, then mt becomes the special orthogonal Lie algebra

as usual and the computation will be the same. If K ̸= Q, then in principle one can still

understand the representation theory of mt, but with a more extensive use of representation

theory of type BD simple Lie algebras over Q. See, e.g., [Mil17]. ■

Example 2.3.8 (OG6-type). Let X be a hyper-Kähler manifold of OG6-type. The reduced

LLV structures of X are

H4(X,Q) ∼= V̄(2) ⊕ V̄(1,1) ⊕ 136Q, H6(X,Q) ∼= V̄(3) ⊕ V̄(1,1,1) ⊕ 137V̄ ⊕ 240Q.

Once we consider V̄ = H2(X,Q) as a Hodge structure, these isomorphisms are Hodge struc-

ture isomorphisms. However, they may not be an irreducible decomposition of Hodge struc-

tures.

If X is very general then mt = ḡ, meaning the above isomorphisms are indeed irreducible

Hodge structure decompositions. In particular, there are precisely 136-dimensional and 240-

dimensional Hodge cycles in H4(X,Q) and H6(X,Q), respectively. If X is a very general

polarized hyper-Kähler manifold then the special Mumford–Tate algebra mt ∼= so(T, q̄) be-

comes smaller and we have a further decomposition of irreducible Hodge structures

H4(X,Q) ∼= T(2) ⊕ T(1,1) ⊕ 2T ⊕ 138Q,

H6(X,Q) ∼= T(3) ⊕ T(1,1,1) ⊕ T(2) ⊕ T(1,1) ⊕ 139T ⊕ 379Q.

In particular, there are 138-dimensional and 379-dimensional Hodge cycles in H4(X,Q) and

H6(X,Q), respectively. ■
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2.4 Digression: Nagai’s conjecture

We provide two applications of our results in §2.2. In this section, we discuss its first appli-

cation to a conjecture raised by Nagai [Nag08], following [GKLR, §4–6].
To state the conjecture, we need to set up some additional notation. Let X → ∆∗

be a smooth projective family of hyper-Kähler manifolds over a punctured disc and fix a

single fiber X, a projective hyper-Kähler manifold of dimension 2n. Associated to the family

we can define a notion of the k-th monodromy operator Tk ∈ GL(Hk(X,Q)) (in fact, in

GL(Hk(X,Z))) on each cohomological degree 0 ≤ k ≤ 4n. The monodromy theorem [Sch73,

(6.1)] claims Tk is always a quasi-unipotent operator on Hk(X,Q). One can thus define its

logarithm

Nk = log Tk ∈ gl(Hk(X,Q)) for 0 ≤ k ≤ 4n,

which becomes a nilpotent operator on Hk(X,Q). Its index of nilpotency νk is the minimal

nonnegative integer satisfying

(Nk)
νk = 0.

A general result in Hodge theory gives us a bound 0 ≤ νk ≤ k. In particular, ν2 = 0, 1 or 2.

Conjecture 2.4.1 (Nagai). Let X → ∆∗ be a smooth projective family of hyper-Kähler

manifolds of dimension 2n over a punctured disc. If νk denotes the index of nilpotency of its

k-th log monodromy operator, then we have

ν2k = k · ν2 for 0 ≤ k ≤ n.

In fact, Nagai himself solved his conjecture when the fiber X of X → ∆∗ is of K3[n]-type.

The hope of the conjecture is to establish a relation between the second and k-th mon-

odromy operators of a family of hyper-Kähler manifolds. In this sense, the following theorem

discovered by Soldatenkov [Sol20] should be considered as a conceptually more important

result than the conjecture itself. Soldatenkov’s theorem is later reproved in [GKLR, Thm

4.9]. Both proofs crucially rely on the reduced LLV structure on the cohomology Hk(X,Q).

Recall that the reduced LLV structure was nothing but a ḡ-module structure on each co-

homology Hk(X,Q). Since ḡ ∼= so(V̄ , q̄), this meant each cohomology Hk(X,Q) had the

so(V̄ , q̄)-module structure

ρk : so(V̄ , q̄)→ gl(Hk(X,Q)).

The monodromy operator is defined by a diffeomorphism of X, meaning it respects the

Beauville–Bogomolov form q̄. Hence T2 ∈ O(V̄ , q̄) and N2 = log T2 ∈ so(V̄ , q̄).
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Theorem 2.4.2 (Soldatenkov). In the setting of Conjecture 2.4.1, the k-th log monodromy

operator Nk is determined by the second log monodromy operator N2 via the reduced LLV

structure map:

Nk = ρk(N2).

One may naturally wonder Conjecture 2.4.1 may be a formal consequence of this theo-

rem. Surprisingly, the conjecture turns out to claim more. The following theorem reduces

the conjecture into a numerical criterion on the dominant weights appearing in the LLV

decomposition. Strictly speaking, since the conjecture is solely about the even cohomology,

we need to consider the LLV decomposition of the even cohomology

H∗
even(X,Q) ∼=

⊕
λ

mλVλ. (2.4.3)

Proposition 2.4.4. (i) If b2(X) ≤ 4 then Conjecture 2.4.1 holds.

(ii) Assume b2(X) ≥ 5 and consider the condition

λ0 + λ1 + λ2 ≤ n for all λ appearing in the even LLV decomposition (2.4.3).

(2.4.5)

Then (2.4.5) implies Conjecture 2.4.1. Conversely, Conjecture 2.4.1 implies (2.4.5) if

there exists a type II degeneration of X.

A type II degeneration is a smooth projective family X → ∆∗ of hyper-Kähler manifolds

whose index of nilpotency of the second log monodromy is ν2 = 1. In other words, modulo

the technical issue on the existence of a type II degeneration, Conjecture 2.4.1 is equivalent

to the numerical criterion (2.4.5) about the LLV structure on H∗
even(X,Q). The results in

§2.2 readily apply to verify such a numerical criterion.

Theorem 2.4.6. Assume the fiber X of the family X → ∆∗ is either of K3[n], Kumn, OG10

or OG6-type. Then Conjecture 2.4.1 holds.

The proof of Proposition 2.4.4 is almost purely representation theoretic, but with a single

additional geometric input that the second log monodromy operator N2 is compatible to

the limit mixed Hodge structure of a K3-type Hodge structure V̄ = H2(X,Q). The main

technical lemma is [GKLR, Lem 5.10], which uses this fact to obtain a preferred basis of V̄

with which the computation can be easily done. This goes back to the idea of [FS86]. We will

neither give a proof for Proposition 2.4.4 nor state the main technical lemma in the original

paper.

Let us conclude this section with a further progress on Nagai’s conjecture. The following

is proved in [HMb].
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Theorem 2.4.7 (Huybrechts–Mauri). Conjecture 2.4.1 holds for k = n.

2.5 Digression: The second Betti number of hyper-

Kähler manifolds

Nagai’s conjecture is essentially equivalent to the cohomological condition (2.4.5). The condi-

tion is verified for all known deformation types of hyper-Kähler manifolds by Theorem 2.4.6.

In fact, the following stronger condition is satisfied for all known deformation types of hyper-

Kähler manifolds. Recall that we are using the notation λ = (λ0, · · · , λr) to denote dominant

weights of the LLV algebra gC. If b2(X) = 2r + 1 is odd then λr is always nonnegative, but

if b2(X) = 2r is even then λr may be negative. See Appendix A.

Conjecture 2.5.1. Every dominant weight λ appearing in the LLV decomposition (2.1.5)

satisfies

λ0 + · · ·+ λr−1 + |λr| ≤ n.

Theorem 2.5.2. Conjecture 2.5.1 holds for K3[n], Kumn, OG10 or OG6-type hyper-Kähler

manifolds.

Our feeling is that Conjecture 2.5.1 is quite a strong claim (for example, it implies Nagai’s

conjecture). The goal of this section is to present the following consequence of the conjecture

to the second Betti number b2(X) of X. This is joint work with Radu Laza in [KL20].

Theorem 2.5.3. Assume Conjecture 2.5.1 holds for a hyper-Kähler manifold X of dimen-

sion 2n. Then its second Betti number b2(X) = dimH2(X,Q) is bounded above by

b2(X) ≤

1
2

(
21 +

√
96n+ 433

)
if H∗

odd(X,Q) = 0,

2k + 1 if Hk(X,Q) ̸= 0 for some odd k.

A weaker version of the bound can be written as

b2(X) ≤ max
{

1
2

(
21 +

√
96n+ 433

)
, 4n− 1

}
,

or equivalently

n 1 2 3 4 5 6 7 ≥ 8

b2(X) ≤ 22 23 23 24 25 26 27 4n− 1
.
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The idea is to attach a rational invariant to each g-modules and use Salamon’s result. We

briefly sketch the proof. Let E be any g-module and h ∈ g a degree operator defined in

(2.1.1). Consider the eigenspace decomposition E =
⊕

k∈ZEk with respect to h. We attach

to E a formal power series

S(E) =
∑
k∈Z

(−1)k dimEk · exp(kt) ∈ Q[[t]]. (2.5.4)

It is easy to show

S(E ⊕ E ′) = S(E) + S(E ′), S(E ⊗ E ′) = S(E) · S(E ′), (2.5.5)

meaning S defines a ring homomorphism from the representation ring of g toQ[[t]]. Moreover,

it is easy to observe S(E) does not have any odd degree term on t.

Definition 2.5.6. The slope s(E) of a g-module E is twice the ratio between the constant

and t2-coefficients of S(E) ∈ Q[[t]] in (2.5.4). More explicitly, we define

s(E) =

∑
k(−1)kk2 dimEk∑
k(−1)k dimEk

∈ Q.

The reader should be aware that the slope is undefined when E has the “Euler charac-

teristic” 0. One nice thing about the notion of a slope is that we can restate the result of

Salamon [Sal96] in the following better way:

Theorem 2.5.7 (Salamon). Let X be a hyper-Kähler manifold of dimension 2n and g its

LLV algebra. Assume the topological Euler characteristic of X is nonzero. Then the slope of

the g-module H∗(X,Q) is n
3
.

The core ingredient for the proof will be a computation of the slope for every irreducible

g-module. This proved in [KL20, Thm 3.4] and we will not reproduce its proof here. Once we

have this, the bound on the second Betti number is a formal consequence of the properties

of the slope function.

Theorem 2.5.8. Let Vλ be an irreducible g-module of highest weight λ = (λ0, · · · , λr). If

λr ≥ 0 then

s(Vλ) = 8 · (
∑r

i=0 λi) b2(X) + (
∑r

i=0(λi − i)2 − i2)

(b2(X) + 1)(b2(X) + 2)
.

If λr < 0, then s(Vλ) = s(Vλ′) where λ′ = (λ0, · · · , λr−1,−λr).
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Proof of Theorem 2.5.3. We only consider the case when X does not have any odd coho-

mology. Start from the result s(H∗(X,Q)) = n
3
in Theorem 2.5.7. The additivity of (2.5.5)

bounds it above by

n

3
= s(H∗(X,Q)) ≤ max{s(Vλ) : λ appearing in the LLV decomposition (2.1.5)}.

Among the irreducible components Vλ in the LLV decomposition, we always have the Ver-

bitsky component V(n). Now Theorem 2.5.8 together with Conjecture 2.5.1 guarantees V(n)

has the maximum slope among all Vλ’s appearing in the LLV decomposition. We conclude

n

3
= s(H∗(X,Q)) ≤ s

(
V(n)

)
=

8n(b2(X) + n)

(b2(X) + 1)(b2(X) + 2)
.

The desired bound on b2(X) follows by solving the inequality.
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Chapter 3

Relative automorphism scheme of a

Lagrangian fibration

Introduction

Any flat projective morphism between algebraic varieties Y → B admits the notion of a

relative automorphism scheme AutY/B → B. It is a group scheme over B. In particular,

a Lagrangian fibered projective hyper-Kähler manifold admits a group scheme AutX/B →
B. [AF16] observed its neutral component ν : P → B almost makes π a torsor under

it. Unfortunately, we do not know this discussion on the automorphism scheme can be

generalized into non-projective hyper-Kähler manifolds.

The main result Theorem 3.1.1 of this section uses Hodge theory to overcome this issue.

It proves the smooth part π : X0 → B0 of the Lagrangian fibration is a torsor under a unique

polarized abelian scheme ν : P0 → B0. It is a much weaker result than Arinkin–Fedorov’s in

the projective setting, but has an advantage that it also works for the non-projective setting

and has more contents on polarizations.

One consequence of the main theorem is the notion of a polarization type associated to

π. This recovers the result of [Wie16]. The polarization type is deformation invariant on

π (Theorem 3.3.1) and already computed for all known deformation types of hyper-Kähler

manifolds (Theorem 3.2.3). We will also define the notion of a polarization scheme. The po-

larization scheme a priori contains additional monodromy information than the polarization

type, but we conjecture this monodromy information is always trivial. This will be discussed

in the next chapter and more specifically in Conjecture 4.3.2.
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3.1 Abelian scheme associated to a Lagrangian fibra-

tion

Let us start with the main theorem of this section.

Theorem 3.1.1. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold, B0 a Zariski

open subset of B over which π is smooth, and X0 = π−1(B0). Then

(i) There exists a unique abelian scheme ν : P0 → B0 making π : X0 → B0 an analytic

torsor under ν. The abelian scheme P0 is simple and projective.

(ii) P0 admits a unique primitive polarization

λ : P0 → P̌0. (3.1.2)

Definition 3.1.3. The abelian scheme ν : P0 → B0 in Theorem 3.1.1 is called the abelian

scheme associated to π.

Our theorem is highly motivated by [AF16, Thm 2], which is stronger than our theorem

when X is projective. The theorem is also motivated by [vGV16] and [Saw04]. We first prove

Theorem 3.1.1 in the first subsection, and next talk about more properties and examples of

the abelian scheme P0 in the following subsections. The reader should be aware that π is

only an analytic torsor in general. If we further assume X is projecitve then π becomes an

étale torsor by Proposition 1.2.7.

3.1.1 Proof of the theorem

Recall from Theorem 1.2.13 that every smooth fiber F of π is an abelian variety. It would be

helpful to first reproduce the proof of this fact. The key idea is the following cohomological

lemma, which has been discovered several times independently in [Voi92, Ogu09a, Mat16]

and recently generalized into higher degree cohomologies by [SY22]. We copy Matsushita’s

proof here.

Lemma 3.1.4 (Matsushita). Let F be any smooth fiber of π and h ∈ H2(X,Z) the coho-

mology class of π∗OB(1). Then the restriction map

−|F : H2(X,Z)→ H2(F,Z)

has ker(−|F ) = h⊥. Consequently, it has im(−|F ) ∼= Z.
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Proof. The smooth fiber F is a complex torus. Thus bothH2(X,Z) andH2(F,Z) are torsion-
free, so we may prove the claim over R. Also, if σ ∈ H2,0(X) is a holomorphic symplectic

form then its restriction σ|F vanishes because F is Lagrangian. Hence we may prove the

statement for the real (1, 1)-classes.

Fix any Kähler class ω ∈ H1,1(X,R) of X, so that its restriction ω|F becomes a Kähler

class on F . By the hard Lefschetz theorem combined with the Hodge–Riemann bilinear

relation, a cohomology class y ∈ H1,1(F,R) is zero if and only if
∫
F
y(ω|F )

n−1 = 0 and∫
F
y2(ω|F )

n−2 = 0. When y = x|F is a restriction of a class x ∈ H1,1(X,R), we are ready to

use the Fujiki relation∫
F

x|F (ω|F )
n−1 =

∫
X

xωn−1hn = (const.)q̄(x, h)q̄(ω, h)n−1,∫
F

(x|F )
2(ω|F )

n−2 =

∫
X

x2ωn−2hn = (const.)q̄(x, h)2q̄(ω, h)n−2.

Since q̄(ω, h) > 0, x|F = 0 if and only if q̄(x, h) = 0.

Proposition 3.1.5 (Voisin). The image of the restriction map −|F in Lemma 3.1.4 is gen-

erated by an ample class of F . As a result, F is an abelian variety.

Proof. Say y is an integral generator of Lemma 3.1.4. Choose any Kähler class ω ∈ H2(X,R)
and consider its restriction ω|F , a Kähler class on F . It has to be a nonzero real multiple of

y. This means, up to sign, y has to be a Kähler class on F . Hence y is an integral Kähler

class, so it is ample.

We caution the reader to be aware that the ample generator y of the image of the

restriction map need not be primitive. This issue will be later discussed in Proposition 3.2.6.

Our choice of the polarization will be a unique primitive ample class in H2(F,Z) parallel to
y, so it may not be contained in the image of the restriction map H2(X,Z)→ H2(F,Z) over
Z.

We divide the proof of Theorem 3.1.1 into three parts: (1) an explicit construction of the

polarized abelian scheme P0, (2) proving such a construction makes X0 a torsor under P0,

and finally (3) its uniqueness. The uniqueness should be a more general fact about arbitrary

torsors, at least in the algebraic case (see Moret-Bailly’s answer in [MB]). The construction

of P0 works for any proper family of complex tori. The uniqueness of the polarization is

the only part that needs the fact X0 is obtained from a Lagrangian fibered hyper-Kähler

manifold X.
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Proof of Theorem 3.1.1, construction. The following is presented in [vGV16], and we repro-

duce their argument here. Apply the global invariant cycle theorem (for proper maps between

compact Kähler manifolds [Del71]) and Lemma 3.1.4 to obtain

H0(B0, R
2π∗Q) = im(H2(X,Q)→ H2(F,Q)) ∼= Q.

Hence, there exists a unique homomorphism (R2π∗Q)∨ → Q of local systems on B0 up

to scalar. This is a homomorphism of Q-VHS: fiberwise, Proposition 3.1.5 proves the im-

age of H2(X,Q) → H2(F,Q) is an ample class. Restrict it to the morphism of Z-VHS
(R2π∗Z)∨ → Z. The morphism can be uniquely determined once we assume it to be primi-

tive and represents an ample class on each fiber. Finally, use the fact that π : X0 → B0 is

a family of complex tori (abelian varieties) and obtain an isomorphism R2π∗Z = ∧2R1π∗Z.
The result is a primitive polarization

(R1π∗Z)∨ ⊗ (R1π∗Z)∨ → Z. (3.1.6)

We have constructed a weight −1 Z-VHS (R1π∗Z)∨ equipped with a polarization (3.1.6).

Now use a formal equivalence of categories between polarized weight −1 Z-VHS and that

of polarized abelian schemes (e.g., [Del72, §5.2] [Del71, §4.4]). This constructs our desired

abelian scheme ν : P0 → B0 with a unique primitive polarization λ : P0 → P̌0 over B0. To

prove P0 is simple, we may prove the corresponding VHS R1π∗Q is simple. This is tacitly

proved in [vGV16] and later explicitly stated in [Voi18, Lem 4.5]. We omit its proof here.

Proof of Theorem 3.1.1, torsor. Consider an analytic open covering {Bi : i ∈ I} of B0 so

that over each Bi, the restriction of the Lagrangian fibration π : Xi → Bi admits at least

one holomorphic section si : Bi → Xi. Considering si as a zero section, π : Xi → Bi becomes

an abelian scheme. Hence by the equivalence of abelian schemes and (R1π∗Z)∨, ν and π are

isomorphic over Bi by ϕi : Xi → Pi sending si to the zero section of Pi.

Use the isomorphism ϕi to transform the group law + : Pi ×Bi
Pi → Pi into a Pi-action

on Xi. That is, we define a group action morphism by

ρi : Pi ×Bi
Xi → Xi, (pi, xi) 7→ ϕ−1

i (ϕi(xi) + pi).

We want to patch ρi together to define a group action ρ : P0×B0 X0 → X0 over the entire B0.

To do so, we need to check whether the definitions of ρi and ρj coincides over the intersection

Bij = Bi ∩Bj, i.e.,

ϕ−1
i (ϕi(xij) + pij) = ϕ−1

j (ϕj(xij) + pij) for all (pij, xij) ∈ Pij ×Bij
Xij. (3.1.7)
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Over Bij, one has a transition function ϕj ◦ ϕ−1
i : Pij → Xij → Pij, an automorphism of

Pij. Recall that the isomorphisms ϕi and ϕj are constructed by choosing the zero sections

si and sj, and the corresponding isomorphisms ϕi : Xij
∼= Pij and ϕj : Xij

∼= Pij are as

abelian schemes. From it, we notice the automorphism ϕj ◦ ϕ−1
i : Pij → Pij is a translation

automorphism. The translation is by ϕj ◦ϕ−1
i (0), the difference of the two zero sections. With

this, we have a sequence of identities

ϕj(xij) + pij = ϕj ◦ ϕ−1
i (ϕi(xij)) + pij =

(
ϕi(xij) + ϕj ◦ ϕ−1

i (0)
)
+ pij

=
(
ϕi(xij) + pij

)
+ ϕj ◦ ϕ−1

i (0) = ϕj ◦ ϕ−1
i

(
ϕi(xij) + pij

)
.

This proves (3.1.7). Hence ρi patches together and defines a morphism ρ : P0 ×B0 X0 → X0.

The group action axioms are all easily verified. Also,X0 is clearly a P0-torsor by construction.

Proof of Theorem 3.1.1, uniqueness. Let ν : P0 → B0 be a (not necessarily projective)

abelian scheme so that π becomes a torsor under ν. We claim R1ν∗Z ∼= R1π∗Z as VHS

over B0. Consider the group scheme action map

P0 ×B0 X0 X0

B0

ρ

µ
π .

From the diagram, we have a pullback morphism between the VHS ρ∗ : R1π∗Z → R1µ∗Z.
The latter VHS is isomorphic to the direct sum R1ν∗Z ⊕ R1π∗Z by the Künneth formula

(e.g., [Ive86, VII.2.7]) and the decomposition theorem for smooth proper morphisms. Hence

composing with the first projection, we obtain a morphism R1π∗Z → R1ν∗Z. Now over a

small analytic open subset U ⊂ B0, fix any holomorphic section of π : XU → U so that

we can identify PU and XU . Hence ρ becomes the addition operation of the abelian scheme

XU×U XU → XU . With this description, the pullback morphism is fiberwise ρ∗ : H1(F,Z)→
H1(F,Z) ⊕H1(F,Z), x 7→ (x, x). Hence the morphism R1π∗Z → R1ν∗Z is an isomorphism

over U , and the claim follows.

3.1.2 More properties of the abelian scheme

The abelian scheme ν : P0 → B0 should be considered as the neutral component of the

automorphism scheme AutX/B → B restricted to B0. This was the original construction of

[AF16] when X is projective. (Note: for the construction of the automorphism scheme for
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flat projective morphisms, see [Nit05, Thm 5.23]. Keep in mind that π is flat by Proposi-

tion 1.2.3.) Unfortunately, if X is non-projective then we do not know a general construction

of the automorphism scheme for flat proper morphisms.1

Over a smaller base B0, one can simply avoid this technical difficulty by considering a

smaller subsheaf of translation automorphisms

AuttrX0/B0
(U) = {f : XU → XU : U -automorphism acting by translation on each fibers}.

(3.1.8)

It can be easily showed P0 represents this sheaf, giving another interpretation for the asso-

ciated abelian scheme P0. The following proposition collects the characterizations of P0.

Proposition 3.1.9. We have the following three different characterizations of the associated

abelian scheme ν : P0 → B0.

(i) It represents the translation automorphism sheaf AuttrX0/B0
in (3.1.8).

(ii) It is a unique abelian scheme associated to the weight −1 VHS (R1π∗Z)∨ on B0.

(iii) It is a dual abelian scheme of the relative Picard scheme Pic0X0/B0
→ B0.

The following proposition was first observed in [Ogu09a] in a special case when π admits

a (rational) section.

Proposition 3.1.10 (Oguiso). The generic fiber of the associated abelian scheme ν : P0 →
B0 has the Picard number 1.

Proof. Say L is the function field of B and PL → SpecL is the generic fiber of ν, which

is an abelian variety over L. Since P0 has a unique polarization (up to scalar), PL has a

unique polarization. Note that the ampleness is an open condition in NS(PL)R. Hence the

uniqueness of the polarization implies ρ(PL) = 1.

Proposition 3.1.11. Assume π admits a rational section. Then ν : P0 → B0 is in fact

isomorphic to π : X0 → B0.

Proof. The rational section must be defined over B0 by Proposition 1.2.8. Hence X0 becomes

a trivial P0-torsor.

Proposition 3.1.12. Any rational section of ν : P0 → B0 can be uniquely extended to an

honest section.

Proof. The proof is identical to Proposition 1.2.8. An alternative proof can be found in

[BLR90, Cor 8.4.6].
1That is, we do not know the representability of the automorphism sheaf. We could not find a reference

for the construction of the “relative Douady space” of a flat proper morphism X → B.
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3.1.3 Examples of the associated abelian schemes

We provide three examples describing Theorem 3.1.1. Notice that in all the given examples

the morphism ν : P0 → B0 is extendable, often into a Lagrangian fibration of another

hyper-Kähler manifold.

Example 3.1.13. Let π : X → B = P1 be an elliptic K3 surface and ν : P0 → B0

the associated abelian scheme over the smooth locus B0. The theory of elliptic K3 surfaces

further claims we can uniquely extend this to the Néron model (semi-abelian scheme) P → B

or even to an elliptic K3 surface π′ : X ′ → B. The new elliptic K3 surface π′ always admits a

section, and is called the relative Jacobian fibration construction of π (e.g., [Huy16, §11.4]).
Therefore, Theorem 3.1.1 is far from being its most general form. ■

Example 3.1.14. Start from an elliptic K3 surface f : S → P1 and construct π : S[n] →
(P1)(n) as in Example 1.3.10. Say V ⊂ P1 is the smooth locus of f and define

U = {b = (b1, · · · , bn) ∈ V (n) : bi ̸= bj for all i ̸= j} ⊂ (P1)(n),

a Zariski open subset of the base B = (P1)(n). At b ∈ U , the Lagangian fibration fibration

has an abelian variety fiber π−1(b) = Sb1 × · · · × Sbn . This means U ⊂ B0.

Consider the relative Jacobian fibration construction f ′ : S ′ → P1 in the previous ex-

ample. Apply the same construction and yield another Lagrangian fibered hyper-Kähler

manifold π′ : (S ′)[n] → (P1)(n). Note that π′ has a rational section defined at least over U .

Hence PU = (π′)−1(U)→ U is an abelian scheme and makes XU = π−1(U) a torsor under it.

By the uniqueness of the associated abelian scheme, we know PU → U is the restriction of

P0 → B0 over U .2 We can again see there is at least one compactification of the associated

abelian scheme into a new Lagrangian fibered hyper-Kähler manifold (S ′)[n] → (P1)(n) with

a rational section. ■

Example 3.1.15. Let π : X → B = |L| be as in Example 1.3.11. The torus fibration

π : X0 → B0 is isomorphic to a relative Jacobian PicmC/B0
→ B0 for m = s + n − 1. The

relative Jacobian PicmC/B0
is a torsor under the neutral relative Jacobian Pic0C/B0

(e.g., [BLR90,

Thm 9.3.1]). By the uniqueness of the associated abelian scheme, P0 is Pic0C/B0
.

Let us now apply the same construction Example 1.3.11 to a different Mukai vector

v′ = (0, l,−n + 1) instead. If l is not divisible by any d with d2 | n − 1 then v′ is primitive

effective, so this yields a new Lagrangian fibered hyper-Kähler manifold π′ : X ′ → B that

2Is U = B0?

50



compactifies the associated abelian scheme Pic0C/B0
→ B0. If l is divisible by some d with

d2 | n− 1, then the Mukai vector v = (0, l,−n + 1) is not primitive anymore. Nevertheless,

the moduli space X ′ still becomes a normal projective and singular symplectic variety by

[KLS06]. Hence we can still compactify the abelian scheme P0 → B0 to a Lagrangian fibration

of a singular symplectic variety. ■

3.2 The polarization scheme and polarization type

Given any Lagrangian fibered hyper-Kähler manifold π : X → B, we have constructed a

unique abelian scheme ν : P0 → B0 with a unique polairzation (3.1.2). The kernel of this

polarization is thus uniquely determined.

Definition 3.2.1. The polarization scheme of π is the kernel

K = ker
(
λ : P0 → P̌0

)
of the unique primitive polarization λ of the associated abelian scheme P0 in (3.1.2).

Since the morphism λ is finite and étale, its kernel K ⊂ P0 is a finite étale commutative

group scheme over B0. Any finite étale group scheme is characterized by: (1) a single fiber of

K as a finite group, and (2) the monodromy information. We conjecture that the monodromy

information for the polarization scheme K is redundant, i.e., K is a constant group scheme.

This conjecture will be part of the more refined Conjecture 4.3.2 in the next chapter.3

A single fiber of K is the kernel of a polarization on a single abelian variety F . It

is therefore necessarily of the form (Z/d1 ⊕ · · · ⊕ Z/dn)⊕2. This defines an invariant of a

Lagrangian fibration π.

Definition 3.2.2. The polarization type of π is an n-tuple of positive integers (d1, · · · , dn)
with d1 | · · · | dn such that the fibers of the polarization scheme are isomorphic to (Z/d1 ⊕
· · · ⊕ Z/dn)⊕2.

The definition of the polarization type first arose in [Wie16]. We note that our definition

is equivalent to this original definition (see [Kim21, §3.2]). We will see in §3.3 that the

polarization type is invariant under deformations of π. Note also that we have d1 = 1

because our polarization λ is primitive.

3In a different direction, we expect K is extendable to a group scheme over a subset B1 ⊂ B ∼= Pn of codi-

mension 2 complement. If this happens, simple connectedness of B1 implies the monodromy is automatically

trivial and hence K becomes a constant group scheme.
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The polarization type is already computed for all known deformation types of hyper-

Kähler manifolds. The computation is done for K3[n] and Kumn-types in [Wie16, Wie18], for

OG10-type in [MO22] and for OG6-type in [MR21]. To state the result, recall from (1.2.4)

and (1.2.5) that we have defined a cohomology class h = c1
(
π∗OB(1)

)
∈ H2(X,Z) and its

divisibility div(h) = gcd{q(h, x) : x ∈ H2(X,Z)}.

Theorem 3.2.3 (Wieneck, Mongardi–Onorati, Mongardi–Rapagnetta). Let π : X → B be

a Lagrangian fibered compact hyper-Kähler manifold. Then the polarization type of π is

(1, · · · , 1) if X is of K3[n]-type,

(1, 1, 1, 1, 1) if X is of OG10-type,

(1, · · · , 1, d1, d2) if X is of Kumn-type,

(1, 2, 2) if X is of OG6-type.

When X is of Kumn-type, we set d1 = div(h) in (1.2.5) and d2 =
n+1
d1

.

Comparing the result with §1.3, one immediately observes the degree of the polarization

d1 · · · dn coincides with the Fujiki constant cX for all known deformation types of hyper-

Kähler manifolds.

Conjecture 3.2.4. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold and

(d1, · · · , dn) its polarization type. Then the Fujiki constant cX of X is precisely d1 · · · dn.

We were not able to prove this conjecture in general, but we could still say the following.

Proposition 3.2.5. We have cX = sn · d1 · · · dn for some s ∈ Q.

Proof. Choose any cohomology class x ∈ H2(X,Z) with q(h, x) = a ̸= 0. By Lemma 3.1.4,

the class x|F ∈ H2(F,Z) must be a positive integer multiple of the primitive polarization

class θ. Set x|F = bθ. The claim follows from the Fujiki relation

d1 · · · dn =
1

n!

∫
F

θn =
1

n!

∫
X

hn
(
1
b
x
)n

= cX · q
(
h, 1

b
x
)n

= cX

(a
b

)n
.

3.2.1 Divisibility of the cohomology class h

The class h ∈ H2(X,Z) and its divisibility div(h) in (1.2.5) is a topological invariant attached

to a Lagrangian fibration π. We claim div(h) captures the non-primitiveness of the restriction

map H2(X,Z)→ H2(F,Z) in Lemma 3.1.4. Unfortunately, our proof depends on the validity

of Conjecture 3.2.4. Since Conjecture 3.2.4 holds for known deformation types, the following

proposition applies to the known deformation types.
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Proposition 3.2.6. Suppose we have cX = d1 · · · dn. Then the image of the restriction

homomorphism H2(X,Z) → H2(F,Z) is generated by aθ, where a = div(h) and θ is a

primitive ample class representing the canonical polarization of F .

Proof. Use the same method in Proposition 3.2.5.

The divisibility of h is also a topological obstruction to the existence of a rational section

of π.

Proposition 3.2.7. Assume cX = d1 · · · dn and π admits at least one rational section. Then

div(h) = 1 or 2.

Proof. If π admits a rational section, then X0
∼= P0 becomes a projective abelian scheme

(Proposition 3.1.11). By the general theory of abelian schemes, twice a polarization is always

associated to a line bundle (e.g., [MFK94, Prop 6.10] or [FC90, Def I.1.6]). This means 2θ ∈
H2(F,Z) is contained in the image of Pic(X) ⊂ H2(X,Z)→ H2(F,Z). By Proposition 3.2.6,

this implies div(h) = 1 or 2.

If X is of K3[n] or Kumn-type then its Lagrangian fibration π : X → B may have

div(h) > 2. See [Mar14] and [Wie18]. In such cases, π (and any of its deformation) would

never admit any rational section.

3.3 Deformation invariance of the polarization type

Deformation invariance of the polarization type is first proved in [Wie16]. The goal of this

section is to recover Wieneck’s result using the language of sheaves and variation of Hodge

structures.

Theorem 3.3.1 (Wieneck). Let π : X → B be a Lagrangian fibered hyper-Kähler manifold.

Then the polarization type of π is invariant under deformations of π.

The rest of this section is devoted to the proof of the theorem. To start our proof, let us

recall from Proposition 3.1.9 that the abelian scheme P0 is associated to the VHS (R1π∗Z)∨

on B0. The polarization λ corresponds to a polarization on the VHS (R1π∗Z)∨. An injective

morphism (R1π∗Z)∨ → R1π∗Z of VHS is induced, so we can consider its cokernel

0 (R1π∗Z)∨ R1π∗Z K 0 . (3.3.2)

Note that K is a local system of finite groups on the base B0. In fact, it is the sheaf of

analytic sections of the polarization scheme K.
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The polarization type is thus modeled by a local system K. We claim we can deform this

local system K. Let us thus consider a family of Lagrangian fibered hyper-Kähler manifolds

p : X π−→ B q−→ ∆ over an open disc ∆. Set B0 ⊂ B the smooth locus of π. For each t ∈ ∆,

we have a Lagrangian fibration π : Xt → Bt and its smooth locus (Bt)0. The above process

attaches a local system Kt on (Bt)0.

Lemma 3.3.3. There exists a local system K on B0 parametrizing Kt on (Bt)0 for every

t ∈ ∆.

Proof. Let X0 = π−1(B0) be the preimage of B0 and let us temporarily call the restriction

X0 → B0 of π simply the same letter π. Therefore, throughout this lemma π is a smooth

proper family of abelian varieties. Consider the local system R2π∗Z on B0. Our first claim is

H0(B0, R2π∗Z) is isomorphic to Z. Denoting by j : B0 → B an open immersion, we claim

H0(B0, R2π∗Z) = H0(∆, q∗j∗R
2π∗Z) ∼= Z

Notice that q∗j∗R
2π∗Z is a constructible sheaf on ∆, because R2π∗Z is a local system on B0,

its pushforward by j∗ is a constructible sheaf on B (e.g., [KS90, Ex VIII.10]), and again its

pushforward by q∗ is a constructible sheaf. For each t ∈ ∆, we have a Lagrangian fibered

hyper-Kähler manifold π : Xt → Bt and we may apply our previous discussions in Proof of

Theorem 3.1.1

H0((Bt)0, R
2π∗Z) ∼= Z.

This proves every fiber of q∗j∗R
2π∗Z is isomorphic to Z. In this setting, we will abstractly

prove the sheaf has Z global sections in Lemma 3.3.4. This proves the claim H0(B0, R2π∗Z) ∼=
Z.

We have a unique primitive morphism (R2π∗Z)∨ → Z of local systems on B0. As π is

a family of abelian varieties over B0, we have an isomorphism R2π∗Z = ∧2R1π∗Z. This
gives us a unique primitive morphism of local systems (in fact, a polarization of VHS by

Proposition 3.1.5) (R1π∗Z)∨⊗(R1π∗Z)∨ → Z over B0. This induces a morphism (R1π∗Z)∨ →
R1π∗Z whose cokernel K is a local system on B0, parametrizing Kt for each t ∈ ∆.

Lemma 3.3.4. Let F be a constructible sheaf on a complex open disc ∆. If every fiber of F

is isomorphic to Z, then we have H0(∆, F ) ∼= Z.

Proof. Since F is constructible, F|U is a local system on a completement U of a finite set of

points t1, · · · , tk ∈ ∆. Let Ui ⊂ U be a small punctured disc around ti. The restriction F|Ui

is determined by the representation

ρi : Z ∼= π1(Ui)→ Aut(Z) = {±1}.
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We have only two possibilities ρi(1) = ±1 for each i. Suppose we have ρi(1) = −1 for some

i. Consider the total space f : Et(F )→ ∆ of the entire constructible sheaf F (espace étalé).

The map f is holomorphic and étale, i.e., a local isomorphism. The condition ρi(1) = −1
geometrically translates to the fact that f−1(Ui) consists of a single copy of Ui (the zero

section) and infinite number of two-sheeted coverings of the punctured disc Ui. By the very

assumption, the preimage f−1(ti) = {p1, p2, · · · } should be isomorphic to Z. Since f is a

local isomorphism, there should be an open disc neighborhood of each pi ∈ Et(F ). Along the

two-sheeted coverings of Ui in f−1(Ui), this cannot happen. Therefore, the only possibility

is that all pi are the non-Hausdorff points filling in the unique punctured disc component in

f−1(Ui) (i.e., the zero section). Hence we obtain at least Z global sections around the zero

section and we are done.

The remaining case is when ρi(1) = 1 for all i. This means F|U is a constant sheaf Z.
The reader should be aware that this does not imply F is a constant sheaf Z on ∆. This

can be again conveniently seen in the total space f : Et(F ) → ∆. Although f is a local

homeomorphism, it is not a covering space unless Et(F ) is Hausdorff. Indeed, the fibers

f−1(ti) can consist of non-Hausdorff points in Et(F ) and this gives us a classification of such

a constructible sheaf F . In any case, there are always Z global sections.

The desired Theorem 3.3.1 clearly follows from Lemma 3.3.3, because the polarization

type was nothing but a single fiber of the local system K.
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Chapter 4

The H2-trivial automorphisms

Introduction

An H2-trivial automorphism of a hyper-Kähler manifold X is a biholomorphic map f : X →
X whose f ∗-action onH2(X,Z) is trivial. The group of allH2-trivial automorphisms Aut◦(X)

has been studied since the very beginning of the hyper-Kähler theory [Bea83a, Huy99]. Let

us assume further X admits a Lagrangian fibration π : X → B. We denote by Aut◦(X/B)

the subgroup of Aut◦(X) consisting of H2-trivial automorphisms respecting the Lagrangian

fibration π. The goal of this section is to study this new group. It will play a crucial role in

our construction of the dual Lagrangian fibration of hyper-Kähler manifolds.

The group Aut◦(X/B) is a finite abelian group and is invariant under deformations of π

(Theorem 4.1.4). Our main conjecture 4.3.2 is that the group Aut◦(X/B) is big enough to

contain the polarization scheme introduced in §3.2. We could not prove the conjecture in full

generality, but will present some partial results in §4.3. These partial results will be used in

Chapter 5 to verify the conjecture for all currently known deformation types of hyper-Kähler

manifolds. We also present an explicit computation of Aut◦(X/B) for all known deformation

types (Theorem 4.4.2).

Along the way to achieve the results above, we introduce two separate statements that

can be of independent interest. The first is a canonical descent of the Aut◦(X)-action on

X to the base B of the Lagrangian fibration (Proposition 4.1.5). The second is a general

method of constructing H2-trivial automorphisms using Albanese fibrations in §4.2.
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4.1 Deformation invariance of H2-trivial automorphisms

Let X be a hyper-Kähler manifold. Beauville in his early paper [Bea83a] already defined the

group of H2-trivial automorphisms

Aut◦(X) = ker
(
Aut(X)→ O(H2(X,Z), q̄), f 7→ (f ∗)−1

)
. (4.1.1)

Here Aut(X) is the group of biholomorphic automorphisms of X. Huybrechts [Huy99, Prop

9.1] together with Hassett–Tschinkel [HT13, Thm 2.1] proved that Aut◦(X) is a finite group

and is invariant under deformations of X.

Theorem 4.1.2 (Huybrechts, Hassett–Tschinkel). Let X be a hyper-Kähler manifold. Then

the group Aut◦(X) in (4.1.1) is a finite group invariant under deformations of X.

Let us further assume X admits a Lagrangian fibration π : X → B. We can then restrict

our attention to H2-trivial automorphisms that respect the Lagrangian fibration

Aut◦(X/B) = Aut(X/B) ∩ Aut◦(X). (4.1.3)

This group is finite because it is a subgroup of Aut◦(X). The goal of this first section is to

settle a similar result for Aut◦(X/B).

Theorem 4.1.4. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then the

group Aut◦(X/B) in (4.1.3) is a finite abelian group invariant under deformations of π.

The rest of this section will be devoted to the proof of this theorem. In fact, we will only

prove the deformation invariance of Aut◦(X/B) in this section, and will prove it is abelian

later in Proposition 4.3.8. The first main idea of the proof is to descend the Aut◦(X)-action

to the base B. This can be of independent interest, so let us also make it as a separate

proposition.

Proposition 4.1.5. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then

(i) There exists a canonical Aut◦(X)-action on B making π an Aut◦(X)-equivariant mor-

phism.

(ii) Under this descent, Aut◦(X/B) = ker
(
Aut◦(X)→ Aut(B)

)
.

The second main idea is to use the language of sheaves and representability of them by

complex manifolds. Before getting into the proofs of Theorem 4.1.4 and 4.1.5, let us change

our problems into the sheaf language.
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4.1.1 Sheaf of automorphisms

Suppose we have a family of hyper-Kähler manifolds p : X → S over a complex manifold S.

Let U ⊂ S be an analytic open subset and denote by p : XU = p−1(U) → U the restricted

family over U . We define the sheaf of H2-trivial automorphism groups Aut◦X/S on S by

Aut◦X/S(U) = {f : XU → XU : U -automorphism such that f ∗ : R2p∗Z→ R2p∗Z is the identity}.

By Theorem 4.1.2, this sheaf is a local system of finite groups, parametrizing Aut◦(Xt) for

t ∈ S. Similarly, given a family of Lagrangian fibered hyper-Kähler manifolds, we can define

a sheaf parametrizing Aut◦(Xt/Bt):

Definition 4.1.6. Given a family of Lagrangian fibered hyper-Kähler manifolds p : X π−→
B q−→ S, we define a sheaf of groups Aut◦X/B/S on S by

Aut◦X/B/S(U) = {f : XU → XU : BU -automorphism such that f ∗ : R2p∗Z→ R2p∗Z is the identity}.

Equivalently, we may define Aut◦X/B/S = q∗AutX/B ∩ Aut◦X/S.

Consider the automorphism sheaf AutB/S of the Pn-bundle B → S. It is the sheaf of

analytic local sections of the PGLn+1(C)-group scheme AutB/S → S. Proposition 4.1.5 is

essentially the main idea of the theorem, but will not be enough to be used in the proof of

the theorem. We will need to state the following stronger version of it. Both Theorem 4.1.4

and Proposition 4.1.5 will be a consequence of this stronger version.

Proposition 4.1.7. Let X → B → S be a family of Lagrangian fibered hyper-Kähler mani-

folds over an open ball S.

(i) There exists a canonical Aut◦X/S-action on B making π : X → B an Aut◦X/S-equivariant

morphism over S.

(ii) Under this descent, Aut◦X/B/S = ker
(
Aut◦X/S → AutB/S

)
.

4.1.2 G-linearized line bundles

Let us briefly recall the notion of a G-linearizability of a line bundle on a complex manifold.

For simplicity we only consider finite group actions. Our references are [Bri18, §3], [Dol03, §7]
and [MFK94], but we need to take some additional care since these references only consider

the algebraic setting.

LetG be an arbitrary finite group and X a complex manifold equipped with a holomorphic

G-action. A G-linearized line bundle on X is a holomorphic line bundle L together with a
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collection of isomorphisms Φg : g∗L → L for each g ∈ G, satisfying the condition Φgg′ =

Φg′ ◦ g′∗Φg for all g, g′ ∈ G. A G-invariant line bundle on X is a holomorphic line bundle

L such that g∗L ∼= L for each g ∈ G (without any condition). We denote by PicG(X )
and Pic(X )G the groups of G-linearized line bundles and G-invariant line bundles on X up

to isomorphisms, respectively. The second group is precisely the G-invariant subgroup of

Pic(X ).
There is a forgetful homomorphism PicG(X ) → Pic(X )G, which is neither injective nor

surjective in general. To understand the obstruction to its surjectivity, one considers an exact

sequence of abelian groups ([Dol03, Rmk 7.2] or [Bri18, Prop 3.4.5])

PicG(X ) Pic(X )G H2(G,Γ) , Γ = H0(X ,O∗
X ).

Both Dolgachev and Brion’s discussions are for algebraic varieties, but their proofs can be

adapted to our analytic setting as well. With this exact sequence in hand, we have:

Lemma 4.1.8. Every G-invariant line bundle H on X is G-linerizable up to a suitable

tensor power.

Proof. It is a general fact in the theory of group cohomology (for finite groups) that all the

higher degree cohomologies H≥1(G,Γ) are |G|-torsion for any G-module Γ (e.g., [Ser79, Cor

VIII.1]). Hence by the previous lemma, the |G|-th tensor H⊗|G| vanishes in H2(G,Γ) and

hence comes from PicG(X ).

For us, the importance of the G-linearizability of a line bundle comes from the induced

G-action on the higher direct images of a linearized line bundle. If L is a G-linearized line

bundle on X and p : X → S is a G-invariant holomorphic map, then we have a contravariant

G-action on all the higher direct image sheaves

g∗ : Rkp∗L → Rkp∗L, (g ◦ g′)∗ = g′∗ ◦ g∗.

Now assume further L is globally generated over S and p∗L is a vector bundle on S. Then

we have a G-action on PS(p∗L) making the holomorphic map X → PS(p∗L) G-equivariant

over S. See [MFK94, Prop 1.7].

4.1.3 Proof of the theorem

This subsection presents the proof of Proposition 4.1.7 and Theorem 4.1.4. To start, recall

the sheaf of H2-trivial automorphisms Aut◦X/S is a local system on S. Both of the statements
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are local on the base S, so we may assume S is an open ball. Then Aut◦X/S becomes a

constant sheaf, so we may consider it as an abstract finite group

G = Aut◦(X)

acting on X → S fiberwise (where X is any fixed single fiber).

The following lemma proves every line bundle on X is G-invariant.

Lemma 4.1.9. G acts trivially on Pic(X ).

Proof. We first claim G acts trivially on H2(X ,Z). Apply the Leray spectral sequence

Ep,q
2 = Hp(S,Rqp∗Z) ⇒ Hp+q(X ,Z).

Noticing that R0p∗Z = Z, R1p∗Z = 0, and S is an open ball, we obtain an isomorphism

H2(X ,Z) ∼= H0(S,R2p∗Z). This isomorphism respects the G-action as the Leray spectral

sequence is functorial. Now G acts on H2(Xt,Z) trivially for any fiber Xt, so G acts on

R2p∗Z trivially and the claim follows.

It is enough to prove the first Chern class map Pic(X ) → H2(X ,Z) is injective. This

homomorphism is induced by the exponential sequence 0 → Z → OX → O∗
X → 0, so it

suffices to prove H1(X ,OX ) = 0. Again, use the Leray spectral sequence

Ep,q
2 = Hp(S,Rqp∗OX ) ⇒ Hp+q(X ,OX ).

This time, we have R0p∗OX = OS and R1p∗OX = 0. This implies H1(X ,OX ) = 0.

Consider the line bundle H = π∗OB/S(1) on X . Since Pic(X ) is G-invariant, we can apply

Lemma 4.1.8 to H and conclude H⊗m is G-linearizable for some positive integer m. As a

result, we have a G-equivariant morphism πm : X → Bm where Bm = PS

(
p∗H⊗m

)
is the dual

of the complete linear system associated to H⊗m. Consider the diagram

X

B Bm

S

p

π

πm

q
qm

. (4.1.10)

Lemma 4.1.11. The m-th relative Veronese embedding B ↪→ Bm makes the diagram (4.1.10)

commute.

Proof. Notice that the morphism π : X → B associated to H has connected fibers. Hence,

for any t ∈ S, the fiber π : Xt → Bt becomes the Iitaka fibration of the line bundle Ht
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(e.g., [Laz04, §2.1.B]). This in particular implies that any morphism πm : Xt → (Bm)t

associated to H⊗m
t factors through the Iitaka fibration π. The factorization is precisely the

Stein factoriazation of πm and Bt ↪→ (Bm)t is the m-th Veronese embedding. In other words,

the m-th relative Veronese embedding makes the diagram commute.

Proof of Proposition 4.1.7. For the first item, we need to prove π is G-invariant. The mor-

phism πm in the above diagram was G-equivariant by construction. This implies π is G-

equivariant since πm is factorized into X → B ↪→ Bm. The second item is an immediate

consequence of the first item.

Proof of Theorem 4.1.4. The sheaves Aut◦X/S and AutB/S are represented by

Aut◦X/S
∼=

⊔
f∈Aut◦(X)

S, AutB/S ∼= PGLn+1(C)× S.

Hence the desired sheaf Aut◦X/B/S is representable by ker(α : Aut◦X/S → AutB/S) by Propo-

sition 4.1.7. To prove the kernel is a constant subgroup scheme, it is enough to show the

following: let S ′ be a connected component of Aut◦X/S. Consider the restriction of α followed

by the projection

β : S ′ → PGLn+1(C).

Then we claim that either β(S ′) = {id} or β(S ′) ̸∋ id. Notice that the image β(S ′) consists

of |G|-torsion matrices in PGLn+1(C). Since the set of |G|-torsion matrices is a disjoint union

of PGLn+1(C)-adjoint orbits (classified by eigenvalues), the connected set β(S ′) has to lie in

a single orbit. The adjoint orbit containing the identity matrix is a singleton set {id}. Hence
the claim follows.

4.2 H2-trivial automorphisms via Albanese fibrations

This section discusses an explicit construction of certain H2-trivial automorphisms of geo-

metric origin. The main result of this section will be Proposition 4.2.7, but to state it we

need to introduce some relevant settings.

Throughout the section, we stick to the following setting. LetM be a projective symplectic

manifold, not necessarily irreducible.1 By the Beauville–Bogomolov decomposition theorem,

M must admit a finite étale covering X × T →M where X is a finite product of projective

hyper-Kähler manifolds and T is an abelian variety. This is called a split covering of M . In

fact, Beauville in [Bea83a, §3] also considered minimal such a covering.

1The projectiveness of M will be only used in Theorem 4.2.2.
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Theorem-Definition 4.2.1 (Beauville). Let M be a compact symplectic manifold, not nec-

essarily irreducible. A minimal split covering of M is a split covering Φ : X × T →M such

that any split covering Φ′ : X ′×T ′ →M factors through Φ. Then the minimal split covering

of M always exists and is unique up to non-unique isomorphisms. Moreover, the minimal

split covering is always finite Galois.

Meanwhile, Kawamata [Kaw85, Thm 8.3] proved the following theorem.

Theorem 4.2.2 (Kawamata). Let M be a K-trivial smooth projective variety. Then its

Albanese morphism Alb : M → Alb(M) is an étale fiber bundle. More precisely, there exists

an isogeny ϕ : T → Alb(M) of abelian varieties such that the base change of Alb becomes a

trivial fiber bundle over T :

X × T M

T Alb(M)

Φ

pr2 Alb
ϕ

. (4.2.3)

If we apply Kawamata’s theorem to a projective symplectic manifoldM then Φ : X×T →
M in the theorem becomes a split covering of M . Combining the results of Beauville and

Kawamata, we obtain:

Proposition 4.2.4. Let M be a projective holomorphic symplectic manifold and Alb : M →
Alb(M) its Albanese morphism, an étale fiber bundle by Kawamata. Assume X = Alb−1(0)

is a projective hyper-Kähler manifold. Then there exists a unique isogeny ϕ : T → Alb(M)

such that the morphism Φ in the fiber diagram (4.2.3) becomes the minimal split covering of

Beauville.

Proof. Use Theorem 4.2.2 to construct an isogeny ϕ′ : T ′ → Alb(M) trivializing the Albanese

map as in (4.2.3). Since ϕ′ is a finite Galois covering, Φ′ is also a finite Galois covering with

Gal(Φ′) ∼= Gal(ϕ′). The first lemma in [Bea83a, §3] claims Aut(X×T ′) = Aut(X)×Aut(T ′).

Hence the Gal(Φ′)-action on X×T ′ is by (f, a) where f and a are automorphisms on X and

T , respectively. The isomorphism Gal(Φ′)→ Gal(ϕ′) is by the second projection (f, a) 7→ a.

Since Gal(ϕ′) is the kernel of the isogeny ϕ′, the automorphisms a must be translations of

T ′.

Now consider the homomorphism Gal(Φ′)→ Aut(X) by (f, a) 7→ f . Set H by the kernel

of it; it consists of elements of the form (idX , a). Under the isomorphism Gal(Φ′) ∼= Gal(ϕ′),

we can consider it as a subgroup of Gal(ϕ′), so there exists a Galois covering T ′ → T = T ′/H

corresponding to it. Let ϕ : T → Alb(M) be the morphism factorizing ϕ′. We have a cartesian
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diagram

X × T ′ X × T M

T ′ T Alb(M)

pr2

Φ

pr2 Alb
ϕ

.

By construction, Gal(Φ) consists of automorphisms (f, a) with no (idX , a) (i.e., the Gal(ϕ)-

action on X is effective). But this means Φ is precisely Beauville’s minimal split covering

[Bea83a, §3]. The uniqueness of ϕ follows from the uniqueness of the minimal split covering.

The proposition in particular proves that the minimal split covering can be always realized

by an isogeny ϕ : T → Alb(M) and the base change (4.2.3).

Definition 4.2.5. We call ϕ : T → Alb(M) in Proposition 4.2.4 the minimal isogeny

trivializing the Albanese morphism Alb : M → Alb(M). It is unique up to non-unique

isomorphisms.

In fact, the proof of Proposition 4.2.4 is saying more about an arbitrary isogny ϕ′.

Corollary 4.2.6. Notation as in Proposition 4.2.4. Let ϕ′ : T ′ → Alb(M) be any isogeny

trivializing the Albanese morphism. Then

(i) ϕ′ factors though the minimal isogeny ϕ.

(ii) There exists a canonical Gal(ϕ′)-action on X.

(iii) The isogeny ϕ′ is minimal if and only if the Gal(ϕ′)-action on X is effective.

Proof. All of these can be directly deduced from the proof of Proposition 4.2.4. Recall

Gal(Φ′)→ Gal(ϕ′), (f, a) 7→ a is an isomorphism. Therefore, f = fa is uniquely determined

by a, and this defines Gal(ϕ′)→ Aut(X), a 7→ fa.

Now we can state the main result of this section. The ideas here were already contained

in [Bea83a, Bea83b].

Proposition 4.2.7. Notation as in Proposition 4.2.4 and 4.2.6. Then Gal(ϕ′) acts on X by

H2-trivial automorphisms. That is, we have a canonical homomorphism

Gal(ϕ′)→ Aut◦(X),

which is injective if and only if ϕ′ is minimal.
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Proof. By Corollary 4.2.6, we may assume ϕ′ = ϕ is minimal and Gal(ϕ) ⊂ Aut(X). The

content of the proposition is that it is further a subgroup of Aut◦(X).

Consider the diagram (4.2.3). Our first step is to equip T -actions on all the four spaces

to make the diagram T -equivariant. Equip a T -action on T by translation, and on X × T

only on the second factor again by translation. The T -action on Alb(M) is by translation

via the morphism ϕ: if a ∈ T and z ∈ Alb(M) then we define a.z = z + ϕ(a).

To equip a T -action on M , we claim the T -action on X × T descends to M via Φ.

The descent works if the Gal(Φ)-action on X × T commutes with the T -action. Recall from

the discussions in Proposition 4.2.4 that Gal(Φ) acts on X × T by (f, a) where f is an

automorphism of X and a is a translation of T . Now let b ∈ T and (x, t) ∈ X × T . Then we

have a sequence of identities

b.
(
(f, a).(x, t)

)
= (f(x), t+ a+ b) = (f, a).

(
b.(x, t)

)
.

This proves the T -action and Gal(Φ)-action commutes, yielding the descent T -action on M .

The conclusion is that Alb becomes automatically T -equivariant (and hence the diagram

(4.2.3) becomes T -equivariant).

By definition, the stabilizer the T -action on Alb(M) is precisely kerϕ = Gal(ϕ). Since the

Albanese map Alb : M → Alb(M) is T -equivariant, this induces a Gal(ϕ)-action on the fiber

Alb−1(0) = X. One easily shows this coincides with our previous Gal(ϕ)-action on X. Now

notice that any T -action on M is isotopic to the identity map because T is path connected.

In particular, T acts on M trivially at the level of cohomology H∗(M,Q). The embedding

X ⊂M is Gal(ϕ)-equivariant, so we have a Gal(ϕ)-equivariant restriction homomorphism

H2(M,Q)→ H2(X,Q).

Hence it suffices to prove this restriction homomorphism is surjective.

Now the question became topological. Deform the complex structure of the hyper-Kähler

manifold X very generally so that H2(X,Q) becomes a simple Q-Hodge structure (we will

have to lose the projectiveness of X). The complex structure of M can be correspondingly

chosen in a way that the finite covering map Φ : X × T → M becomes holomorphic.

Therefore, the Hodge structure morphism H2(M,Q) → H2(X,Q) is either 0 or surjective.

We only need to rule out the former possibility.

To prove it is nonzero, consider any global holomorphic symplectic form σ on M . Pulling

it back to X × T gives a global holomorphic symplectic form on X × T . But H2,0(X × T ) =

H2,0(X)⊕H2,0(T ) by Künneth. If σ was 0 in the H2,0(X)-component then this would mean
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σ doesn’t contain any 2-forms along the tangent direction of X, violating σ is a symplectic

form. Hence σ|X cannot be 0. The claim follows.

Remark 4.2.8. The inclusion Gal(ϕ) ⊂ Aut◦(X) for the minimal isogeny ϕ in Propo-

sition 4.2.7 may be a strict inclusion. For example, we will later see that when X if of

Kumn-type then

Gal(ϕ) ∼= (Z/n+ 1)⊕4, Aut◦(X) ∼= Z/2⋉ (Z/n+ 1)⊕4.

4.3 Relative automorphism scheme and H2-trivial au-

tomorphisms

The goal of this section is to relate the group Aut◦(X/B) and the polarization scheme K

introduced in §3.2. We will see in Proposition 4.3.8 that every H2-trivial automorphism

f ∈ Aut◦(X/B) defines a global section of the abelian scheme P0 → B0 in Theorem 3.1.1.

If we consider Aut◦(X/B) as a constant group scheme over B0, this means we have a closed

immersion of group schemes

Aut◦(X/B) ↪→ P0. (4.3.1)

We expect the image of this map will contain the polarization scheme.

Conjecture 4.3.2. The polarization scheme K is contained in the image of (4.3.1).

Note that this conjecture would in particular imply

(i) the polarization scheme K is a constant group scheme; and

(ii) the polarization scheme K is extendable to the entire base B.

Although we were not able to prove this conjecture in its full generality, we will later in The-

orem 5.2.1 prove this conjecture for all known deformation types of hyper-Kähler manifolds.

Remark 4.3.3. In the first version of our arXiv paper [Kim21], we have incorrectly claimed

that the polarization scheme K would be precisely the image of (4.3.1). This turns out to

be not always the case, as there is a counterexample when π : X → B is a Lagrangian

fibered Kum3-type hyper-Kähler manifold with div(h) = 2. In such a case, we can compute

Aut◦(X/B) ∼= (Z/2)⊕5 and K is a constant group scheme (Z/2)⊕4. See Theorem 4.4.2. This

counterexample was pointed out to us by Salvatore Floccari.
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The main results of this section are the following two propositions, which will be later

used in the proof of Theorem 5.2.1. To state the results, we need the following new definition.

Given any positive integer a, we define

Ka = ker
(
aλ : P0 → P̌0

)
. (4.3.4)

All Ka are finite étale commutative group schemes over B0. The original polarization scheme

K is K1.

Proposition 4.3.5. Let π : X → B and π′ : X ′ → B′ be two deformation equivalent

Lagrangian fibered hyper-Kähler manifolds. Let a be any positive integer. Then (4.3.1) factors

through

Aut◦(X/B) ↪→ Ka (4.3.6)

if and only if the same holds for π′.

Proposition 4.3.7. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold and

(d1, · · · , dn) its polarization type. Assume we have an equality cX = d1 · · · dn. Then (4.3.6)

holds for a = div(h).

The first proposition says that for a fixed integer a, the property (4.3.6) is deformation

invariant on π. The second proposition gives an upper bound of such an integer a making

(4.3.6) holds. The reason for taking a = div(h) is because the image of the restriction map

H2(X,Z)→ H2(F,Z) is precisely div(h) times the primitive polarization (Proposition 3.2.6).

We also recall that the condition cX = d1 · · · dn is satisfied for all known deformation types

of hyper-Kähler manifolds by Theorem 3.2.3.

The rest of this section will be devoted to the proof of Proposition 4.3.5 and 4.3.7.

Proposition 4.3.8. Every H2-trivial automorphism in Aut◦(X/B) defines a global section

of P0 → B0. That is, we have a closed immersion of group schemes

Aut◦(X/B) ↪→ P0.

Proof. We first claim Aut◦(X/B) acts on π : X0 → B0 by fiberwise translation automor-

phisms. Consider the quotient X̄ = X/Aut◦(X/B) with a commutative diagram

X

X̄

B

p

π

π̄

.
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We first claim p is étale on general fibers over B. Let S ⊂ X be the ramified locus of p.

The quotient p is symplectic so it is quasi-étale, i.e., S has codimension ≥ 2. Let b ∈ B

be a general point, so that the fibers F = Xb and F̄ = X̄b are both smooth. Observe the

ramification locus of p : F → F̄ is precisely S ∩ F , which is of codimension ≥ 2 since b is

general. The purity of the branch locus theorem forces p : F → F̄ to be étale.

Now we have a finite étale quotient p : F → F̄ = F/Aut◦(X/B) between smooth projec-

tive varieties. Its Galois group Aut◦(X/B) acts on F by fixed point free automorphisms. Since

F is an abelian variety, this means Aut◦(X/B) acts on F by translations. The conclusion is

that on a general fiber of π, the group Aut◦(X/B) acts by translation.

Recall from Proposition 3.1.9 that P0 is the abelian scheme representing the translation

automorphism sheaf of π : X0 → B0. This means Aut◦(X/B) defines a rational section of

ν : P0 → B0. By Proposition 3.1.12, the rational section must be defined over the entire B0

and becomes an honest section.

An immediate byproduct of this proposition is that Aut◦(X/B) is an abelian group,

completing the promised proof of Theorem 4.1.4. Let us prove an elementary lemma before

we get into the proof of the desired propositions.

Lemma 4.3.9. Let P0 → B0 be an abelian scheme over a complex manifold B0 and aλ : P0 →
P̌0 a polarization with Ka = ker(aλ). Assume there exists a torsion section f : B0 → P0. If

f(B0) ∩ Ka ̸= ∅ then f(B0) ⊂ Ka.

Proof. The statement is topological and local on the base B0, so we may assume B0 is a

complex open ball S and P0 → B0 is homeomorphic to the topological constant group

scheme (R/Z)2n × S → S. In this setting, the kernel Ka is a constant subgroup scheme and

the torsion section f is a constant section. Hence f(S)∩Ka ̸= ∅ if and only if f(S) ⊂ Ka.

Proof of Proposition 4.3.5. Consider a one-parameter family of Lagrangian fibered hyper-

Kähler manifolds X → B → ∆ over a complex disc ∆. By Lemma 3.3.3, there exists a

notion of a family of abelian schemes P0 → B0 and a family of finite étale group schemes

Ka ⊂ P0. Proposition 4.3.8 proves we have a closed immersion Aut◦(X/B) ↪→ P0 for a single

fiber. In fact, the argument applies to the entire family and produces Aut◦(X/B) global

sections of P0 → B0, or equivalently an embedding

Aut◦(X/B) ↪→ P0.

Since Aut◦(X/B) is finite, the global sections are torsion. Suppose we had Aut◦(X/B) ↪→ Ka

for the original Lagrangian fibration over 0 ∈ ∆. Then this forces Aut◦(X/B) ↪→ Ka over

the entire ∆ by Lemma 4.3.9. The claim follows.
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Proof of Proposition 4.3.7. Recall from Proposition 3.2.6 that the restriction mapH2(X,Z)→
H2(F,Z) has a rank 1 image generated by the class aθ, where a = div(h) and θ is the primi-

tive ample class corresponding to our polarization λ : F → F̌ . The preimage of aθ ∈ H2(F,Z)
under this restriction homomorphism is precisely S = {x ∈ H2(X,Z) : q(x, h) = a}. By the

previous Proposition 4.3.5, the claim is invariant under deformations of π. We may thus

deform π and assume Pic(X) ∩ S ̸= ∅. In other words, we may assume the composition

Pic(X) ⊂ H2(X,Z)→ H2(F,Z) is generated by aθ.

The assertion Aut◦(X/B) ↪→ Ka = ker(aλ) is equivalent to aλ(Aut◦(X/B)) = 0. The

latter equality may be verified fiberwise, so we may concentrate on a single fiber F = ν−1(b) =

π−1(b). Let L be any line bundle on X such that its image under Pic(X)→ H2(F,Z) is aθ.
This means the polariztion aλ can be described as

aλ : F → F̌ , tx 7→ [t∗x(L|F )⊗ L−1
|F ].

If we assume tx = f|F is from a global H2-trivial automorphism f ∈ Aut◦(X/B), then we

have a sequence of identities

t∗x(L|F ) = (f|F )
∗(L|F ) = (f ∗L)|F ∼= L|F ,

where the last isomorphism follows from the fact f acts on Pic(X) ⊂ H2(X,Z) trivially.

This proves aλ sends Aut◦(X/B) to 0 and the claim follows.

4.4 Computing H2-trivial automorphisms for known

deformation types

The following computations are obtained by [Bea83a], [BNWS13] and [MW17]. Together

with the deformation invariance by [HT13] it computes the group Aut◦(X) for all currently

known deformation types of hyper-Kähler manifolds.

Theorem 4.4.1 (Beauville, Boissière–Nieper-Wißkirchen–Sarti, Mongardi–Wandel). Let X

be a hyper-Kähler manifold. Then

Aut◦(X) ∼=


{id} if X is of K3[n] or OG10-type,

Z/2⋉ (Z/n+ 1)⊕4 if X is of Kumn-type,

(Z/2)⊕8 if X is of OG6-type.

The main result of this section is to prove the following analogue of this theorem.
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Theorem 4.4.2. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Then

(i) Aut◦(X/B) ∼=

{id} if X is of K3[n] or OG10-type,

(Z/2)⊕4 if X is of OG6-type.

(ii) Assume X is of Kumn-type and (1, · · · , 1, d1, d2) is the polarization type of π in Theo-

rem 3.2.3. Then

Aut◦(X/B) ∼=

(Z/2)⊕5 if n = 3 and the polarization type is (1, 2, 2),

(Z/d1 ⊕ Z/d2)⊕2 otherwise.

Since Aut◦(X) is already trivial for K3[n] and OG10-types, our theorem is obvious for

the first two cases. Recall we have proved Theorem 4.1.4 that Aut◦(X/B) is invariant under

deformations of π. By [MR21], every Lagrangian fibration of an OG6-type hyper-Kähler

manifold is deformation equivalent to each other, and by [MW17, §5], Aut◦(X/B) = (Z/2)⊕4

for at least one Lagrangian fibration of an OG6-type hyper-Kähler manifold. This proves the

theorem for the OG6-case. Therefore, the only remaining case in the theorem is the Kumn-

type.

By [Wie18, §6.28], every Lagrangian fibration of a Kumn-type hyper-Kähler manifold is

deformation equivalent to the construction in Example 1.3.14. Therefore, we only need to

prove the following more concrete result.

Proposition 4.4.3. Let π : X → B be a Lagrangian fibered Kumn-type hyper-Kähler man-

ifold in Example 1.3.14, and let (d1, d2) be the polarization type of the ample class l on A.

Then

Aut◦(X/B) ∼=

(Z/2)⊕5 if n = 3 and d1 = d2 = 2,

(Z/d1 ⊕ Z/d2)⊕2 otherwise.

Our proof of this proposition is by explicit computations. In fact, the computation can

be carried out further and calculates the polarization scheme K as well. This is the second

main result of this section.

Proposition 4.4.4. Let π : X → B be a Lagrangian fibered Kumn-type hyper-Kähler mani-

fold in Example 1.3.14.

(i) If n = 3 and d1 = d2 = 2, then K is an order 2 subgroup of Aut◦(X/B) via (4.3.1).

(ii) In other cases, K = Aut◦(X/B) via (4.3.1).

The proof of these propositions are quite lengthy. In this article, we omit the proof of

Proposition 4.4.4 and highlight only the outline of the proof of Proposition 4.4.3. We refer

to the original paper [Kim21] for full details.
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4.4.1 Describing the H2-trivial automorphisms of Kumn-type mod-

uli constructions

Recall from Theorem 4.4.1 that any Kumn-type hyper-Kähler manifold has Aut◦(X) ∼=
Z/2⋉ (Z/n+ 1)⊕4. The goal of this subsection is to explicitly describe such automorphisms

for Example 1.3.5. Lagrangian fibrations play no role in this subsection.

In Example 1.3.5 and 1.3.14, we have identified PiclA with Ǎ. Strictly speaking, this is

possible only after choosing a reference point of PiclA. We choose a symmetric ample line

bundle [L0] ∈ PiclA.
2 By the general theory of abelian varieties, there exists a dual ample

line bundle Ľ0 on Ǎ. The ample line bundles L0 and Ľ0 induce polarization isogenies

φ : A→ Ǎ, φ̌ : Ǎ→ A,

making their compositions the multiplication endomorphisms

[n+ 1] : A
φ−→ Ǎ

φ̌−→ A, [n+ 1] : Ǎ
φ̌−→ A

φ−→ Ǎ. (4.4.5)

Since L0 has a polarization type (d1, d2), the dual line bundle Ľ0 also has a polarization type

(d1, d2) (see [BL04, Prop 14.4.1]). In particular, we have an isomorphism

ker φ̌ ∼= (Z/d1 ⊕ Z/d2)⊕2. (4.4.6)

A closed point x on A defines a translation automorphism by x. Our notation for the

translation automorphism is

tx : A→ A, y 7→ y + x.

A closed point ξ on Ǎ represents a numerically trivial line bundle on A. Considering ξ both

as a closed point on Ǎ and a line bundle on S can possibly lead to a confusion. Thus, we

will write

Lξ : numerically trivial line bundle on A corresponding to ξ ∈ Ǎ.

With these notation in mind, we can explicitly realize the Aut◦(X)-action for the moduli of

sheaves construction X.

Proposition 4.4.7. Let X be a Kumn-type hyper-Kähler manifold in Example 1.3.5. Then

2There are precisely 16 symmetric line bundles in PiclA by [BL04, Lem 4.6.2]. It will be crucial we have

chosen L0 to be symmetric when we describe the Z/2-part of Aut◦(X) explicitly.
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(i) We have an isomorphism

Aut◦(X) = {±1}⋉ {(x, ξ) ∈ A[n+ 1]× Ǎ[n+ 1] : φ(x) = 0, φ̌(ξ) = sx}.

(ii) With the above identification, the Aut◦(X)-action on X is defined by

(1, x, ξ).[E] = [t∗xE ⊗ Lξ], (−1, x, ξ).[E] = [t∗x([−1]∗E)⊗ Lξ],

where [−1] : A→ A is the multiplication by −1 automorphism on A.

The rest of this subsection is devoted to sketching the proof of Proposition 4.4.7. We omit

all the technical details of its proof. To start, we note that Yoshioka has already computed

an explicit trivialization of Albanese morphism Alb : M → A× Ǎ. Yoshioka’s trivialization

is obtained by the base change [n+ 1] : A× Ǎ→ A× Ǎ, which is a degree (n+ 1)8 isogeny.

This turns out to be not a minimal isogeny trivializing the Ablanese morphism in the sense

of §4.2. The minimal isogeny is precisely

ϕ : A× Ǎ→ A× Ǎ, (x, ξ) 7→ (sx− φ̌(ξ), φ(x)). (4.4.8)

Proposition 4.4.9. The base change (4.4.8) is the minimal isogeny trivializing the Albanese

morphism Alb : M → A× Ǎ in the sense of Definition 4.2.5.

By Proposition 4.2.7, we have a canonical, effective and H2-trivial Gal(ϕ)-action on X.

The Galois group Gal(ϕ) is captured by the kernel of ϕ, so we have

Gal(ϕ) = {(x, ξ) ∈ A[n+ 1]× Ǎ[n+ 1] : φ(x) = 0, φ̌(ξ) = sx}.

This explains the isomorphism in Proposition 4.4.7. We can also compute Gal(ϕ) more

explicitly.

Lemma 4.4.10. Gal(ϕ) ∼= (Z/n+ 1)⊕4.

This will describe the Gal(ϕ) ∼= (Z/n + 1)⊕4-action on X acting trivially on H2. Since

Aut◦(X) ∼= Z/2⋉(Z/n+1)⊕4, we still need an additional Z/2-action to describe. Fortunately,

this is not hard to guess. Define an involution ι on M by

ι([E]) = [[−1]∗E].

A Riemann–Roch computation tells us the subvariety X ⊂ M is indeed invariant under ι

(here we need the fact L0 is symmetric). It remains to prove ι acts on the second cohomology

ofX as the identity. We have already proved in Proposition 4.2.7 thatH2(M,Q)→ H2(X,Q)
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is surjective. Hence it will be enough to prove ι acts on H2(M,Q) as the identity. This follows

because ι is induced from the automorphism [−1] on A, [−1] acts on H2(A,Q) trivially and

finally the Hodge structure H2(M,Q) is obtained by a tensor construction of H2(A,Q) by

[B2̈0]. This exhausts the entire Aut◦(X)-action description on X and hence completes the

proof of Proposition 4.4.7.

4.4.2 Automorphisms respecting the Lagrangian fibration

With Proposition 4.4.7 at hand, we can complete the proof of Proposition 4.4.3. Any H2-

trivial automorphism is of the form

f = (1, x, ξ) or (−1, x, ξ), x ∈ A[n+ 1], ξ ∈ Ǎ[n+ 1].

Let us first consider the automorphisms of the form f = (1, x, ξ). It acts on X by

f.[E] = [t∗xE ⊗ Lξ].

Recall π : X → B is the Fitting support map π([E]) = [SuppE]. Hence f respects π if and

only if SuppE = SuppE − x for all [E] ∈ X. This is equivalent to x = 0, so we obtain

precisely

{(1, 0, ξ) : ξ ∈ Ǎ[n+ 1], φ̌(ξ) = 0} ∼= ker φ̌ ⊂ Aut◦(X/B).

Note also that ker φ̌ ∼= (Z/d1 ⊕ Z/d2)⊕2 by (4.4.6).

We now consider the automorphisms of the form f = (−1, x, ξ). It acts on X by

f.[E] = [t∗x([−1]∗E)⊗ Pξ].

Therefore, f respects π if and only if SuppE = [−1]∗ SuppE − x for all [E] ∈ X. In other

words, we have D = [−1]∗D−x for all D ∈ |L0|. Fix any 1
2
x ∈ A with 2 ·

(
1
2
x
)
= x. Then this

condition is equivalent to the fact that every divisor in the complete linear system |t∗− 1
2
x
L0|

is a symmetric divisor. The following lemma completes the proof of Proposition 4.4.3. We

again refer to [Kim21] for the proof of the lemma.

Lemma 4.4.11. Let A be an abelian surface and L0 a symmetric ample line bundle on

it. Then every divisor in the complete linear system |L0| is symmetric if and only if L0 is

isomorphic to Θ⊗2 for a principal symmetric ample divisor Θ on A.
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Chapter 5

Constructing the dual Lagrangian

fibration

Introduction

Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. The Strominger–Yau–

Zaslow conjecture predicts an existence of the notion of its dual Lagrangian fibration. The

dual Lagrangian fibration should be a new holomorphic map π̌ : X̌ → B and expected to

satisfy the following two conditions:

(i) π̌ is a Lagrangian fibration of an orbifold X̌.

(ii) If π : X0 → B0 is the associated torus fibration, then π̌ is a compactification of its dual

torus fibration π̌ : X̌0 → B0.

The precise meaning of the two emphasized words in the conditions are not defined, so the

conjecture in general should be interpreted liberally. The goal of this chapter is to realize this

conjecture when X is of known deformation type of hyper-Kähler manifolds. In particular,

we will provide a precise definition of the dual torus fibration in Definition 5.1.2, and prove

X̌ is a hyper-Kähler orbifold admitting π̌ as a Lagrangian fibration.

The technical main ingredient of our result is the proof of Conjecture 4.3.2 for known

types of hyper-Kähler manifolds. The dual Lagrangian fibration will be defined by a global

quotient

π̌ : X̌ → B for X̌ = X/K,

whereK is a subgroup of Aut◦(X/B) that corresponds to the polarization scheme via (4.3.1).

The resulting hyper-Kähler orbifold X̌ has the same universal deformation behavior to X.
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Its Beauville–Bogomolov form q̄X̌ is the same as the original q̄X over Q but may be different

over Z. Its Fujiki constant cX̌ is precisely 1/cX .

5.1 The dual torus fibration

Let π : X → B be a Lagrangian fibered hyper-Kähler manifold. Recall that we called the

restriction π : X0 → B0 of the Lagrangian fibration a torus fibration of π. It is a family

of abelian varieties of dimension n, a torsor under an abelian scheme ν : P0 → B0 by

Theorem 3.1.1.

Guided by the Strominger–Yau–Zaslow (SYZ) conjecture [SYZ96], we expecte there

should be a certain notion of the dual of a Lagrangian fibration π : X → B; this should

be a new morphism π̌ : X̌ → B from a compact Calabi–Yau orbifold X̌, and π̌ should be

a Lagrangian fibration in a certain sense. It is tempting to expect that the conjectural X̌

should be also hyper-Kähler and π̌ is Lagrangian with respect to this hyper-Kähler structure.

The SYZ conjecture further predicts that the dual Lagrangian fibration π̌ needs to be a

compactification of a “dual torus fibration” of the original torus fibration π : X0 → B0. It

is often tacitly assumed in the literature that the dual torus fibration should be the relative

Picard scheme Pic0X0/B0
→ B0. We claim this should not be the case, and the main point of

this section is to propose an alternative definition of the dual torus fibration.

Remark 5.1.1. Here is one reason why we believe the relative Picard scheme construction

Pic0X0/B0
→ B0 may not be a correct definition: it always admits a section, the identity

section. Note that the section issue does not arise in the symplectic geometry context as

any family of tori admits a C∞ section.1 In contrast, existence of a holomorphic (rational)

section is at least a codimension 1 condition in moduli as we have seen in §1.2.1. If one
believes the conjectural dual Lagrangian fibration π̌ : X̌ → B behaves like a Lagrangian

fibered hyper-Kähler orbifold, then π̌ should not admit a rational section once we deform

the original Lagrangian fibration π very generally.

The following is the main definition of this section. Recall from Definition 3.2.1 that we

have a notion of a polarization scheme K, a finite étale commutative group scheme over B0.

Since X0 is a P0-torsor and K is a subgroup scheme of P0, we conclude there is a K-action

on X0 over B0.

1This is because torsors are classified by H1 of the group sheaf that they are acted by. Any C∞ sheaf on

B0 has the vanishing higher cohomology groups because they are fine sheaves.
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Definition 5.1.2. Let π : X → B be a Lagrangian fibered hyper-Kähler manifold and

π : X0 → B0 its associated torus fibration. The dual torus fibration of π is

π̌ : X̌0 → B0 for X̌0 = X0/K,

where K → B0 is the polarization scheme of π in §3.2.

The following two propositions justify our definition of the dual torus fibration.

Proposition 5.1.3. Let π̌ : X̌0 → B0 be the dual torus fibration of π. Then

(i) X̌0 is a torsor under P̌0.

(ii) For any b ∈ B0, the fibers π−1(b) and π̌−1(b) are dual abelian varieties.

(iii) The abelian group homomorphism

H1(B0, P0)→ H1(B0, P̌0)

induced by the polarization λ : P0 → P̌0 sends [X0] to [X̌0].

Proof. The P0-action on X0 over B0 uniquely descends to a P̌0-action on X̌0; notice an

isomorphism P̌0
∼= P0/K and quotient out everything by K. The local trivialization of the

P0-action on X0 gives the local trivialization of the P̌0-action on X̌0. This proves X̌0 is a

P̌0-torsor.

Write F = π−1(b) the fiber of π at b. Since X0 is a P0-torsor, they are fiberwise isomorphic

and hence ν−1(b) ∼= F . Similarly the fibers of π̌ and ν̌ are isomorphic. But the fiber ν̌−1(b)

is isomorphic to F̌ because ν̌ is the dual abelian scheme of ν. The second item follows. The

third item is clear from the Čech cohomology description of the torsors.

Proposition 5.1.4. If π : X → B admits at least one rational section then the dual torus

fibration π̌ : X̌0 → B0 is isomorphic to Pic0X0/B0
→ B0.

Proof. If π has a rational section then the torus fibration π : X0 → B0 has a section by

Proposition 1.2.8. This implies X0 is a trivial P0-torsor, and hence X̌0 is a trivial P̌0-torsor

by Proposition 5.1.3. Thus X̌0
∼= P̌0

∼= Pic0X0/B0
by Proposition 3.1.9.

5.2 The dual Lagrangian fibration for known deforma-

tion types

This section is the main section of the entire article. We begin with a technical main result

of this article.
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Theorem 5.2.1. Conjecture 4.3.2 holds if X is of K3[n], Kumn, OG10 or OG6-type. That

is, the polarization scheme is a constant group scheme contained in the image of (4.3.1).

Proof. Recall from Theorem 3.2.3 and 4.4.2 that we have an explicit computation of the

group Aut◦(X/B) and the polarization type. When X is of K3[n] or OG10-type, both the

polarization scheme K and Aut◦(X/B) are trivial, so the claim is obvious. When X is

of OG6-type, lattice theory forces div(h) = 1 as shown in [MR21, Lem 7.1]. Therefore,

Proposition 4.3.7 applies and we get an inclusion Aut◦(X/B) ↪→ K. Notice every fiber of

K is abstractly the same group as Aut◦(X/B). This means the inclusion is forced to be an

equality fiberwise, whence the global equality Aut◦(X/B) = K.

Assume X is of Kumn-type. By [Wie18], the given Lagrangian fibration π : X → B

is deformation equivalent to the moduli of torsion sheaves construction π′ : X ′ → B′ in

Example 1.3.14 and its deformation type is determined by the value d1 = div(h). If n ̸= 3 or

d1 ̸= 2, then we are in the non-exceptional case of Proposition 4.4.4, so Aut◦(X ′/B′) = K ′.

Use Proposition 4.3.5 to deform this to Aut◦(X/B) ↪→ K. The inclusion has to be an equality

fiberwise by comparing their sizes, so again we obtain a global equality Aut◦(X/B) = K.

It remains to consider one exceptional case when n = 3 and d1 = 2. In this case, on the

one hand from Proposition 4.3.7 we have an inclusion Aut◦(X ′/B′) ↪→ K ′
2, and on the other

hand from Proposition 4.4.4, we have K ′ ↪→ Aut◦(X ′/B′). We have a sequence of inclusions

of group schemes

K ′ ↪→ Aut◦(X ′/B′) ↪→ K ′
2.

The latter inclusion deforms to an inclusion Aut◦(X/B) ↪→ K2 for the original Lagrangian

fibration π by Proposition 4.3.5. But note that K ⊂ K2 can be characterized as a topological

group scheme as K = 2K2. Hence the former inclusion is also preserved by deformations and

yields an inclusion K ↪→ Aut◦(X/B), proving our desired claim.

Remark 5.2.2. We have in fact proved K = Aut◦(X/B) for most of the cases, except

for a single case when X is of Kum3-type and π has a polarization type (1, 2, 2). In this

case, K ⊂ Aut◦(X/B) is an order 2 subgroup. When π : X → B is a moduli of torsion

sheaves construction in Example 1.3.14, then K can be characterized by the translation

automorphisms as we have seen in the explicit computations in §4.4. The exceptional case is
pointed out to us by Salvatore Floccari.

A direct consequence of this theorem is a promised compactification of the dual torus

fibration π̌ : X̌0 → B0 into π̌ : X̌ → B.
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Theorem 5.2.3 (Main theorem). Let π : X → B be a Lagrangian fibered hyper-Kähler

manifold of K3[n], Kumn, OG10 or OG6-type. Let K be the polarization scheme, considered

as a subgroup of Aut◦(X/B) by Theorem 5.2.1. Then

X̌ = X/K for π̌ : X̌ → B

defines a compactification of the dual torus fibration π̌ : X̌0 → B0 in Definition 5.1.2.

Proof. The dual torus fibration is defined by X̌0 = X0/K. For known deformation types,K ⊂
Aut◦(X/B) is a constant group scheme and acts on the entire π : X → B by Theorem 5.2.1.

Therefore, the quotient X̌ = X/K makes sense and compactifies the dual torus fibration

X̌0 = X0/K.

Remark 5.2.4. After all, our construction of the dual Lagrangian fibration is very simple.

The reader may notice the only important ingredient we used is Conjecture 4.3.2, after setting

up the relevant notions correctly. However, we would like to emphasize Conjecture 4.3.2 is

nontrivial. For example, the conjecture depends on the primitiveness of the polarization λ;

if we consider twice a primitive polarization then its kernel K2 = ker(2λ : P0 → P̌0) will

certainly not be contained in Aut◦(X/B). Note also that one does not expect such a simple

quotient construction works for (special Lagrangian fibrations of) Calabi–Yau manifolds.

The polarization scheme K ⊂ Aut◦(X/B) is computed for all known deformation types

of hyper-Kähler manifolds X in Theorem 3.2.3. When X is of K3[n] or OG10-type, the group

is trivial and hence X̌ = X. We can call them “self-dual”. When X is of Kumn or OG6-type,

the group is nontrivial and hence X̌ cannot be homeomorphic to X (their local fundamental

groups are different around the quotient singularities2). We call the corresponding X̌ the

dual Kummer variety and dual OG6, respectively.

Since the quotient is taken by H2-trivial automorphisms, the resulting space X̌ satisfies

many pleasant properties. We collect some properties of π̌ and X̌ in the following proposi-

tions, but we will refer to [Kim21] for their proof. We also omit the definitions of primitive

symplectic orbifolds and irreducible symplectic varieties. See, e.g., [BL18], [Sch20], [Men20]

or [Kim21, §A] for their precise definitions.

Proposition 5.2.5. Keep the notation in Theorem 5.2.3. Then

(i) X̌ is a compact primitive symplectic orbifold and also an irreducible symplectic variety.

It is simply connected.

2We have learned this fact from Mirko Mauri.
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(ii) π̌ : X̌ → B is a Lagrangian fibration of a possibly singular hyper-Kähler variety X̌.

(iii) The dual Kummer variety and dual OG6 have nonempty singular loci X̌sing ⊂ X̌ of

codimension ≥ 4. We have π̌(X̌sing) ⊂ ∆.

Note that the dual Kummer variety and dual OG6 do not admit a symplectic resolution

because their singular loci are of codimension ≥ 4. The following result says X and X̌ have

identical deformation behaviors:

Proposition 5.2.6. Keep the notation in Theorem 5.2.3. Denote by

X → Def(X), XH → B → Def(X,H)

the universal deformations of X and π, respectively. Then

(i) X/Aut◦(X/B)→ Def(X) is the (locally trivial) universal deformation of X̌.

(ii) XH/Aut
◦(X/B)→ B → Def(X,H) is the (locally trivial) universal deformation of π̌.

The following compare the cohomological properties of X and X̌.

Proposition 5.2.7. Keep the notation in Theorem 5.2.3. Then

(i) The Beauville–Bogomolov quadratic space (H2(X̌,Q), q̄X̌) is isomorphic to (H2(X,Q), q̄X).

The Fujiki constant of X̌ is cX̌ = 1/cX .

(ii) The LLV algebra g of X and X̌ are isomorphic. The pullback H∗(X̌,Q) → H∗(X,Q)

is an injective g-module homomorphism.

(iii) H2(X̌,Q) and H2(X,Q) are isomorphic as Hodge structures. The Mumford–Tate al-

gebras of H∗(X,Q) and H∗(X̌,Q) are isomorphic.
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Appendix A

Representation theory backgrounds

Introduction

Representation theory of special orthogonal Lie algebras (algebraic groups) are of particular

interest for the study of the cohomology of hyper-Kähler manifolds. We provide a summary

of their basic representation theory facts here. We will be particularly interested in the

theory over the rational number field Q. Our main reference is [FH91], [Kir08] and [Mil17].

Throughout this section, we denote by

(V, q) : nondegenerate quadratic space over Q of dimension b, g = so(V, q).

A g-module is a finite dimensional Q-vector space E equipped with a Lie algebra homo-

morphism g→ gl(E). Every g-module in this article is assumed to be finite dimensional. We

will often base change the Lie algebra to gC. A gC-module is a finite dimensional C-vector
space F equipped with a Lie algebra homomorphism gC → gl(F ).

A.1 Irreducible representations of special orthogonal

Lie algebras

The goal of this section is to highlight some representation theory facts on the special or-

thogonal Lie algebra g = so(V, q). Since g is a simple Q-Lie algebra, any (finite dimensional)

g-module is completely reducible. This means we can concentrate on the study of irreducible

(=simple) g-modules. The study of irreducible g-modules depend on the parity of b = dimV .
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A.1.1 Type B

Assume b = 2r + 1 ≥ 3 is odd, so that g is a type Br simple Lie algebra.

Any g-module E induces a gC-module EC after base change. The representation theory of

gC ∼= so(b,C) is well-known to be classified by its highest weights. Let us briefly recall this.

Fix a Cartan subalgebra h and a Borel subalgebra b of gC. There exists a preferred choice

of a basis {ε1, · · · , εr} of h∨R such that the simple roots become ε1− ε2, · · · , εr−1− εr and εr.

(With this basis, the weights associated to the standard gC-module VC is 0,±ε1, · · · ,±εr.) Let
Λ,Λ+ ⊂ h∨R be the lattice of weights and the monoid of dominant weights of gC, respectively.

We can explicitly describe them in terms of the preferred basis

Λ = {λ =
r∑

i=1

λiεi : λi ∈ 1
2
Z, λi − λj ∈ Z for all i, j},

Λ+ = {λ ∈ Λ : λ1 ≥ · · · ≥ λr ≥ 0}.
(A.1.1)

Any element λ =
∑r

i=1 λiεi contained in Λ+ is called a dominant weight. We will frequently

denote it by λ = (λ1, · · · , λr), and omit the zeros appearing at the end for simplicity. For

example, λ = (2, 1) denotes a dominant weight 2ε1 + ε2 for any r ≥ 2. Given any dominant

weight λ, there exists a unique irreducible gC-module Vλ,C with the “highest weight” λ and

conversely, any irreducible gC-module is isomorphic to Vλ,C for some dominant weight λ. We

call Vλ,C an irreducible gC-module of highest weight λ.

The classification of irreducible g-modules over Q is more complicated than the theory

over C. See [Mil17, §25.d] or the original paper [Tit71]. Luckily, we can use [DMOS82, Prop

3.1(a)] and deduce the following.

Proposition A.1.2. Let λ = (λ1, · · · , λr) be a dominant weight of g. If λi are integers,

then there exists a unique irreducible g-module Vλ such that its base change over C is the

irreducible gC-module of highest weight λ.1 We call this Vλ an irreducible g-module of highest

weight λ.

If λi are half-integers but not integers, then we do not know when Vλ,C are defined over

Q. Over R, this issue is discussed in [Del99].

A.1.2 Type D

Assume b = 2r ≥ 4 is even, so that g is a type Dr simple Lie algebra.

1In other words, Vλ is absolutely irreducible.
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Let us first describe the representation theory of gC ∼= so(b,C). Fix a Cartan and a

Borel subalgebra of gC. There is again a preferred choice of basis in this situation, making

±ε1, · · · ,±εr the weights associated to the standard gC-module VC. The lattice of weights

and monoid of dominant weights are explicitly described as

Λ = {λ =
r∑

i=1

λiεi : λi ∈ 1
2
Z, λi − λj ∈ Z for all i, j},

Λ+ = {λ ∈ Λ : λ1 ≥ · · · ≥ λr−1 ≥ |λr| ≥ 0}.

Again we write (λ1, · · · , λr) for a dominant integral weight λ =
∑r

i=1 λiεi and omit 0’s at

the end if possible. The irreducible gC-modules are classified by the dominant weights λ. A

similar proposition on irreducible g-modules holds, but this time slightly more complicated.

Proposition A.1.3. Let λ = (λ1, · · · , λr) be a dominant weight with integer λi’s.

(i) If λr = 0 then there exists a unique irreducible g-module Vλ such that its base change

over C is the irreducible gC-module Vλ,C of highest weight λ.

(ii) Assume λr ̸= 0 and denote λ′ = (λ1, · · · , λr−1,−λr). Then there are two possibilities:

(a) Both Vλ,C and Vλ′,C are defined over Q.

(b) There exists a unique irreducible g-module whose base change over C is Vλ,C⊕Vλ′,C.

A.2 Restricting representations to Lie subalgebras

Let E be a g-module and g′ any Lie subalgebra of g. A restriction representation (or restric-

tion of scalars) of E to g′ is a g′-module structure on E defined by a composition

g′ ↪→ g→ gl(E).

We present two lemmas on restriction representations in this section. They are crucially used

in our computation of the LLV structures in §2.2.

A.2.1 Two lemmas on restriction representations

Recall that we are assuming g = so(V, q) for a nondegenerate quadratic space (V, q).

For the first statement, we further assume the quadratic space (V, q) is decomposed into

(V, q) = (V̄ , q̄)⊕ U,

where the latter space is the hyperbolic plane, a 2-dimensional quadratic space with a Gram

matrix ( 0 1
1 0 ). We call in this case (V, q) is a Mukai completion of (V̄ , q̄). A formal argument
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shows there exists a semisimple element h ∈ g = so(V, q) such that we have an h-eigenspace

decomposition (see [KSV19])

g = g−2 ⊕ g0 ⊕ g−2, g0 = ḡ⊕Qh, ḡ = so(V̄ , q̄), g−2
∼= g2 ∼= V̄ . (A.2.1)

We call this decomposition the Mukai completion of ḡ = so(V̄ , q̄) into g = so(V, q).

Lemma A.2.2. Let (V̄ , q̄) be a nondegenerate quadratic space, (V, q) its Mukai completion,

g = so(V, q) and g0 = so(V̄ , q̄) ⊕ Qh as in (A.2.1). Then any g-module E is determined by

its restricted g0-module structure (up to isomorphism).

For the second statement, we assume there exists a nondegenerate quadratic subspace

(T, q) ⊂ (V, q) of dimension b− 1. The orthogonal complement of T splits V into

(V, q) = (T, q)⊕ ⟨a⟩,

where ⟨a⟩ denotes a 1-dimensional quadratic space equipped with a 1 × 1 Gram matrix

a ∈ Q×.

Lemma A.2.3. Let (V, q) be a nondegenerate quadratic space of dimension b = 2r+1, (T, q)

its nondegenerate subspace of dimension b− 1 = 2r, g = so(V, q) and m = so(T, q). Then

(i) Any g-module E is determined by its restricted m-module structure.

(ii) The formal m-character of E is the same as its formal g-character.

We will recall the notion of the formal character in Definition A.2.4. We also note that

Lemma A.2.3 does not hold when b = 2r. The reason will be evident after the proof of it.

A.2.2 The representation ring of special orthogonal Lie algebras

Let us temporarily assume g is any reductive Lie algebra over Q. Consider the categories

Rep(g) and Rep(gC) of finite dimensional g-modules and gC-modules, respectively. They are

both semisimple categories, i.e., every object in the category is completely reducible. Their

Grothendieck rings K(g) and K(gC) are called the representation ring of g and gC.

Any g-module E up to isomorphism is determined by its base change EC as a gC-module.

See, e.g., [Mil17, §25.d]. This has a following interpretation. Consider a base change functor

Rep(g)→ Rep(gC), E 7→ EC.

The induced ring homomorphism K(g)→ K(gC) is then injective.

The representation ring K(gC) of the orthogonal Lie algebra gC ∼= so(b,C) is completely

understood. Let Λ be the weight lattice of gC and ZΛ its group ring. We use the notation

eµ ∈ ZΛ to represent µ ∈ Λ as an element in the group ring ZΛ.
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Definition A.2.4. Let F be any gC-module. Consider its weight decomposition F =
⊕

µ∈Λ F (µ),

where F (µ) indicates the weight µ subvector space of F . We define the formal character map

of gC by a ring homomorphism

ch : K(gC)→ ZΛ, [F ] 7→
∑
µ∈Λ

dimF (µ) · eµ.

Recall the notion of the Weyl group of gC, a group generated by all reflections sα with

respect to the simple roots α. The following result is standard.

Theorem A.2.5. The formal character map ch is injective, and its image is precisely (ZΛ)W .

That is, ch : K(gC)→ (ZΛ)W is a ring isomorphism.

Let us now specialize our discussion to the case of our primary interest, g = so(V, q) for

a nondegenerate quadratic space (V, q) over Q. Assume b = 2r + 1 is odd for r ≥ 1. Recall

we had a preferred choice of basis ε1, · · · , εr of the dual Cartan algebra. Denote xi = eεi for

i = 1, · · · , r. The description (A.1.1) of Λ translates to

ZΛ = Z[x±1
1 , · · · , x±1

r , (x1 · · · xr)
1
2 ].

The Weyl group W2r+1 of the Lie algebra is isomorphic to Sr⋉ (Z/2)×r. It acts on the group

ring Z[x±1
1 , · · · , x±1

r , (x1 · · ·xr)
1
2 ] as follows: Sr acts as a permutation on x1, · · · , xr, and the

i-th factor Z/2 acts as an involution xi 7→ x−1
i . Theorem A.2.5 tells us an explicit description

of K(gC) by an isomorphism

ch : K(gC)→ Z[x±1
1 , · · · , x±1

r , (x1 · · ·xr)
1
2 ]W2r+1 . (A.2.6)

Assume b = 2r is even for r ≥ 2. Again write xi = eεi , where ε1, · · · , εr is a preferred

basis. The group ring ZΛ has the same description as above. However, the Weyl group W2r

becomes smaller, an order 2 subgroup of Sr ⋉ (Z/2)×r consisting of elements with even

number of 1’s in (Z/2)×r. It acts on the group ring ZΛ in the same way. Theorem A.2.5 gives

us an isomorphism

ch : K(gC)→ Z[x±1
1 , · · · , x±1

r , (x1 · · ·xr)
1
2 ]W2r . (A.2.7)

A.2.3 Proof of the lemmas

With the notion of the representation ring, Lemma A.2.2 and A.2.3 are equivalent to the

following.
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Lemma A.2.8. (i) In the setting of Lemma A.2.2, the ring homomorphism Res : K(g)→
K(g0) is injective.

(ii) In the setting of Lemma A.2.3, the ring homomorphism Res : K(g) → K(m) is injec-

tive. It becomes an honest inclusion after describing K(g) and K(m) using the formal

character isomorphisms (A.2.6) and (A.2.7).

Proof. Consider the commutative diagrams

K(g) K(g0)

K(gC) K((g0)C)

Res

Res

,
K(g) K(m)

K(gC) K(mC)

Res

Res

,

where all the vertical maps are base changes and the horizontal maps are restrictions. We

have shown in the previous section that the base change map is injective. Therefore, it is

enough to prove the lower maps Res : K(gC) → K((g0)C) and Res : K(gC) → K(mC) are

injective.

For the first restriction map, note that (g0)C = ḡC ×Ch. Hence its representation ring is

K((g0)C) ∼= K(ḡC)⊗ZZ[t±1]. The formal character isomorphism gives us explicit descriptions

of K(gC) and K((g0)C). If r = 2b+ 1 is odd, then the restriction map becomes

Res : Z[x±1
1 , · · · , x±1

r , (x1 · · · xr)
1
2 ]W2r+1 → Z[x±1

1 , · · · , x±1
r−1, (x1 · · ·xr−1)

1
2 , t±1]W2r−1 ,

sending Res(xi) = xi for i = 1, · · · , r − 1 and Res(xr) = t2.2 This map is injective. Similar

computation also works when r is even.

For the second restriction map, again use the formal character isomorphism to make the

homomorphism into

Res : Z[x±1
1 , · · · , x±1

r , (x1 · · ·xr)
1
2 ]W2r+1 → Z[x±1

1 , · · · , x±1
r , (x1 · · ·xr)

1
2 ]W2r .

This is an honest inclusion because the Weyl group W2r is an order 2 subgroup of the Weyl

group W2r+1.

2To make the restriction map as desired we need to choose a Cartan subalgebra of g precisely by the

Cartan subalgebra of ḡ together with h.
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